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Reexamination of the long-range Potts model: A multicanonical approach
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We investigate the critical behavior of the one-dimensionalq-state Potts model with long-range~LR! inter-
actions 1/r d1s, using a multicanonical algorithm. The recursion scheme initially proposed by Berg is improved
so as to make it suitable for a large class of LR models with unequally spaced energy levels. The choice of an
efficient predictor and a reliable convergence criterion is discussed. We obtain transition temperatures in the
first-order regime which are in far better agreement with mean-field predictions than in previous Monte Carlo
studies. By relying on the location of spinodal points and resorting to scaling arguments, we determine the
threshold valuesc(q) separating the first- and second-order regimes to two-digit precision within the range
3<q<9. We offer convincing numerical evidence supportingsc(q),1.0 for all q, by virtue of an unusual
finite-size effect, namely, finite-size scaling predicts a continuous transition in the thermodynamic limit, despite
the first-order nature of the transition at finite size. A qualitative account in terms of correlation lengths is
provided. Finally, we find the crossover between the LR and short-range regimes to occur inside a narrow
window 1.0,s,1.2, thus lending strong support to Sak’s scenario.

DOI: 10.1103/PhysRevE.69.026109 PACS number~s!: 05.10.Ln, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

Microscopic models with long-range~LR! interactions de-
caying as a power law, i.e., as 1/r d1s, have aroused renewe
interest during the last decade. Beyond their fundame
relevance to the understanding of critical phenomena, t
have started playing a seminal role in the modeling of neu
networks@1# and spin glasses with Ruderman-Kittel-Kasuy
Yosida ~RKKY ! interactions@2#, systems undergoing phas
separation, e.g., highly ionic systems@3# and model alloys
@4#, and more widely in a large class of chemical or biolo
cal models where electrostatic interactions, polarization
van der Waals forces play a central role. They have a
attracted much attention in the framework of nonextens
thermodynamics, where a possible equivalence with sh
range~SR! models is under consideration@5#.

Since the very early work of Ruelle@6#, LR spin models
in particular have been extensively studied. In on
dimensional models, it has been widely shown that lo
range order occurs at finite temperature if and only ifs<1
@6–10#, and this is in strong contrast to the SR case where
phase transition exists at finite temperature. Fisher and
workers@11# have shown that the upper critical dimension
reduced tod* 52s, whereby one-dimensional LR mode
exhibit mean-field-like behavior fors,0.5, with the critical
exponents taking on their classical valuesn51/s andg51
provided the phase transition is continuous. Conversely,
critical behavior fors>0.5 yields nontrivial exponents, an
LR models in effect go through a variety of universali
classes ass is varied within this range, thus exhibiting ric
critical behavior. Due to the ability to continuously vary th
range of interaction, which in effect alters the effective
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mension of the model, one-dimensional LR models are the
fore a powerful paradigm for studying the dependence
critical properties on dimensionality, e.g., in systems abo
their upper critical dimension@12#.

While significant emphasis has been placed on the Is
chain~see, e.g.,@13# for a review!, specific studies of the LR
q-state Potts model are less numerous and rather rec
These include a transfer matrix study combined with fini
range scaling~FRS! @14#, renormalization group~RG! analy-
ses based on Wilson’s momentum-shell method@15,16# or a
real-space procedure@17,18#, a cluster mean-field approac
@19#, and Monte Carlo~MC! simulations@20–25#. The last,
however, mostly focused on the caseq53, and led to nu-
merical estimates of critical exponents and temperatu
showing some discrepancies. Due to the higher ground s
degeneracy, this model reveals a phase diagram mark
richer than that of the Ising chain. It has been shown in
SR case that the transition turns from a continuous to a fi
order one as the number of statesq is increased beyond a
threshold valueqc(d) depending on the dimensionality o
the model. For instance,qc(2)54 andqc(4)52 @26,27# ~see
also Ref.@28# for a complete review!. As for the LR case in
d51, Glumac and Uzelac have shown from MC studies
the three- and five-state Potts model@20# that the same sor
of behavior occurs, i.e., there is a so-called tricritical point
some valuesc(q) depending onq, and the transition is con
tinuous for s.sc . This qualitative picture was later rein
forced in @22# for q53,5,7,9 and in@24# for q53, both
relying on MC studies, and in@21# using a graph-weights
approach. On the other hand, it is noteworthy that RG an
ses dedicated to LR models have remained thus far ra
inconclusive, where distinguishing between first- a
second-order transitions is concerned@15–18#.

Although it is now believed thatqc depends continuously
on the range of interaction for this class of models, the ex
location of the tricritical line separating the two regions
still fairly controversial. The biggest hurdle for a precise a
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reliable determination of this borderline actually stems fro
the weakening of the discontinuous transition assc is ap-
proached, even if exceptionally large lattice sizes are sim
lated, e.g., using the efficient Luijten-Blo¨te cluster algorithm
@29#. While for q53 sc was claimed to lie between 0.6 an
0.7 in @20#, Krech and Luijten pointed out thats50.7 still
belongs to the first-order regime, and that the second-o
regime may set in fors50.75 only@24#. The situation with
q55 turns out to be even worse, with numerical estima
available only within fairly large ranges: a lower bounda
value of 0.8 was reported in@20#, whereas 0.7,sc(5),1.0
according to@22#. These results have not yielded a very p
cise phase diagram as yet, with the only reliable asser
being thatsc(q) increases withq.

The marginal cases51 raises another set of thorny que
tions: in @22# it was reported that the phase transiti
changes from a second-order to a first-order one forq>9,
while it has been shown by Kosterlitz, using a model with
continuum of states@30#, and later on by Cardy, using
discrete model@17#, that inverse square interactions give ri
to a Kosterlitz-Thouless~KT! transition, i.e., one governe
by topological defects@31#. It is worth mentioning that both
hypotheses may be reconciled, at least partially, by follow
a scenario similar to the one devised in@32–34#, whereby for
XY-like models with nonlinear nearest-neighbor interactio
the KT-like transition is preempted by a first-order transiti
whenever the nonlinearity becomes strong enough. While
recent work of Luijten and Messingfeld on the three-st
Potts model@25# lends further support to Cardy’s assertio
the controversy still appears unsettled, however, and in
view a determination of the asymptotic behavior ofsc(q) as
q→` seems of major interest indeed.

We wish to shed light on some of these contradicto
results using MC simulations in generalized ensembles, w
particular emphasis put on the first-order regime. The aim
this work is thus twofold. First, we propose an implemen
tion of the multicanonical algorithm dedicated to the nume
cal study of LR models. This algorithm, devised by Berg a
Neuhaus a decade ago@35,36#, has been successfully applie
in the past to SR models undergoing first-order transitio
As numerical studies of models exhibiting first-order tran
tions are dramatically hampered by huge tunneling tim
when using standard Metropolis update mechanisms@37,38#,
a multicanonical approach is indeed an appropriate ch
for both the determination of the location of the tricritic
line and the estimation of critical couplings in the first-ord
regions,sc . Our purpose is therefore to adapt the sche
initially proposed for SR models so as to make it suitable
a large class of LR models. Second, by relying on an ex
sive study for 3<q<9 and a wide range ofs values, we
arrive at convincing conclusions regarding the location of
tricritical line, the range of validity of the mean-field-lik
behavior, which we find much larger than in previous stu
ies, and the crossover from the LR to the SR regime,
though the last was investigated for the three-state mo
only. We show that our multicanonical implementation yiel
numerical estimates which are in agreement with and o
better than those found in previous studies, although
simulations were performed by relying on medium latti
02610
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sizes, i.e.,L<400 spins. In particular, we obtain the follow
ing estimates forsc(q): s(3)50.72(1), s(5)50.88(2),
s(7)50.94(2), ands(9)50.965(20), and these results a
highly precise. We also offer convincing evidence that t
phase transition in the limiting cases51.0 is not of the first
order for all values ofq, by virtue of an unusual finite-size
effect. A detailed finite-size scaling~FSS! analysis conducted
for q59 shows that, while the transition belongs to the fir
order regime at finite lattice size, its first-order nature wan
quickly enough as size is increased so that the transi
tends to a continuous one in the thermodynamic limit. W
give a qualitative account of this behavior in terms of cor
lation lengths, and by raising some open questions regar
the dynamics of first-order transitions in the LR case, we
to challenge the usual picture inherited from SR models.
nally, by relying on the shape of the specific heat and co
puting several moments of the magnetization, we concl
that a crossover between LR and SR regimes occurs insi
narrow window 1.0,s,1.2

The layout of this article is as follows. In Sec. II, we fir
review some prominent features of the LR Potts mo
through a mean-field~MF! analysis. Special emphasis
given to the calculation of the location of spinodal points
feature we will use in Sec. IV for estimatingsc(q). Section
III is devoted to implementation details of the multicanonic
algorithm specific to LR models. We discuss the iterati
procedure used to obtain the best estimate for the densit
states, the choice of an efficient predictor, and a reliable c
vergence criterion. Improvements over the original algorith
are made in order to work out the algorithm instability due
low energy levels being unequally spaced. Numerical res
regarding both first- and second-order regimes are then
sented in Sec. IV. Since we do not know of any previo
implementation of a generalized ensemble algorithm in
case of LR spin models, we pay particular attention to co
parison with other standard MC algorithms, i.e., in terms
dynamical exponents, tunneling times, and accuracy of
merical estimates of critical couplings.

II. MODEL AND MEAN-FIELD THEORY

Throughout this work we consider a ferromagnetic Po
model incorporating LR interactions ind51. This model is
derived from a generalizedq-state Potts Hamiltonian, i.e.,

H52
1

2 (
iÞ j

Ji j ds i ,s j
2(

i
hids i ,s0

,

where the Potts spins i at site i can take on the value
1, . . . ,q, the first sum runs over all pairs of sites, andhi is
an external aligning field favoring condensation in states0.
Incorporation of LR interactions is carried out by setting

Ji j 5J~ u i 2 j u!5
1

u i 2 j ud1s
,

where d51 throughout this study, ands is an adjustable
parameter which can be related to the effective dimensio
the model. Ass falls off to 21, this model tends to the
9-2
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
mean-field case where all interactions have equal stren
whereas the limiting cases→` corresponds to a pure S
model. Crossover from LR to SR behavior should actua
take place ats51.0 @39,40#, yet no numerical evidence ha
been given so far for this model which would reinforce th
assertion. The thermodynamics of the model is studied
merically by way of the following order parameter:

M5
qmaxnrn21

q21
,

wheren51, . . . ,q, and rn is the density of Potts spins i
staten, which varies between 1/q at infinite temperature and
1 in the ground state. On a lattice of sizeL, numerical imple-
mentation is carried out by using periodic boundary con
tions, i.e., one adds up interactions between all the spin
the original lattice only, and replaces the bare coupling c
stantJ(r ) by J̃(r )5(n52`

1` J(r 1nL). Retaining only inter-
actions such thatu i 2 j u,L/2 leads indeed to strong shifts i
energy and critical couplings for lows values, especially
when finite-size scaling is to be used with medium latt
sizes. For the purpose of numerical evaluation, this sum m
be reexpressed as

J̃~r !5
1

r 11s
1

1

L11s FzS 11s,11
r

L D1zS 11s,12
r

L D G ,
wherez(s,a) denotes the Hurwitz zeta function. The se
energy will be omitted since it is just an additive constant
the total energy.

Mean-field behavior can be readily obtained by using
variational MF approach~see, for instance@41#!, which relies
on the minimization of the following functional:

F@r#5Tr rH1kT Tr r ln r

with respect to a trial density matrixr. Here the trace opera
tion means a sum over all spin configurations, and the
pendence ofH and r on the spin configuration is implied
F@r# reaches a minimum wheneverr5e2H/kT/Z, i.e., in the
case of a canonical Gibbs distribution, and this minimu
yields the free energy of the system. The mean-field appr
mation allows us to express the density matrixr of the whole
system as a product of one-site density matricesr i which
depend solely on the spin variable at sitei. We may thus
rewrite the trace operation as a sum involving traces
single spin variables, namely,

F@r#5kT(
i

Trir i ln r i2(
i

hiTrir ids i ,s0

2
1

2 (
iÞ j

Trir iTrjr j Ji j ds i ,s j
.

For further comparison with numerical results, we are mai
interested in expressing the free energy as a function o
order parameter which is as similar as possible to the
02610
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defined above. This is carried out by parametrizing the t
density matrixr i in terms of the following order paramete
field:

mi5K qds i ,s0
21

q21 L
r i

,

where the average is weighted by the trial density matrixr i .
Seeing that all states but states0 are equivalent, the con
straint Trr i51 thus yields

r i~mi ,s i !5
12mi

q
1mids i ,s0

.

Considering a uniform external fieldhi5h, we havemi
5m for all sites; hence the free energy per spinf (m) reduces
to

q f~m!

q21
52hm2z~11s!m21kTH ~12m!ln~12m!

1
11m~q21!

q21
ln@11m~q21!#J , ~1!

where we dropped terms which are constant inm so that
f (0)50, andz(11s) is the Riemann zeta function. Thi
function expands as 1/s arounds50; hence transition tem
peratures are expected to vary as 1/s in the vicinity of the
MF regime. Equilibrium values of the order parameter a
located at minima of the free energy, and it can be seen
m50 is a stable minimum forkT>2z(11s)/q. For q
52, there is no third-order term in the series expansion
f (m); hence a second-order transition occurs atkTc5z(1
1s). For q>3, the negative coefficient in the third-orde
term of the series expansion creates a second minim
which physically corresponds to a first-order transition.
the transition temperature, the free energy has the same v
at both minima. Following@28#, the exact transition tempera
ture kTc may be computed by simultaneously solvingf (m)
5 f 8(m)50 and yields

kTc

z~11s!
5

q22

~q21!ln~q21!
.

Similarly, spinodal points are computed by jointly solvin
f 8(m)5 f 9(m)50, giving temperature points at which eithe
one of the two minima vanishes. These equations pos
one trivial solution, namely,kT152z(11s)/q correspond-
ing to the extrema atm50 becoming unstable, and a non
trivial solution kT2 which may be obtained numerically b
solving the following equation:

K

2

qS22

q21
5 lnS SAKq

2 D ,

whereS511A112(12q)/(Kq) and we have setK5z(1
1s)/kT2. Alternatively, one may also expressf as a function
of the MF energyE52z(11s)m2 and impose f 8(E)
5 f 9(E)50. While these equations yield the samekT1 and
9-3
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kT2 as above, the two expressions off obviously do not have
the same shape. Spinodal points are sketched in Fig. 1 fq
between 2 and 10. These correspond to the limit of meta
bility for each subphase, respectively. For temperature po
lying inside this temperature range, there exist two value
the order parameter corresponding to a null curvature of
free energy, a feature which is known to induce a long-ra
~i.e., low wave number! instability. This in turn triggers a
phase transition through the so-called spinodal decomp
tion @42#. As expected, the width of the spinodal curveT2
2T1 shrinks to zero asq→2, and accounts for the secon
order nature of the transition atq52, since in this limit the
two minima merge into a single large minimum responsi
for the well-known divergence of fluctuations at a continuo
transition.

III. THE MULTICANONICAL ALGORITHM

The Metropolis algorithm~hereafter denoted as belongin
to the class ofcanonicalalgorithms, i.e., relying on a Bolt
zmann weighting! has long been considered the paradigm
Monte Carlo simulations in statistical physics, yet th
method faces some severe drawbacks in situations wher
sequence of states created by the Markovian chain lead
very repetitive dynamics, i.e., dramatically low acceptan
rates and exponentially diverging autocorrelation times:
makes it necessary to simulate systems over exceedi
long runs in order to obtain good statistics and reliable e
mates of thermodynamical averages~see, for example,@43#
and the contribution by Krauth in@44# for an introductory
review!. This is the case when one comes to simulating s
tems with rugged free energy landscapes, e.g., polym
proteins, and disordered systems including spin glasses
the dynamics may then get trapped in one of numerous l
minima, especially at low temperature. One experien
similar behavior when simulating first-order phase tran
tions ~the so-called supercritical slowing down@37#!, where
the tunneling time between coexisting phases grows ex
nentially with the system size, due to the increasingly h
free energy barrier to be overcome~e.g.,@45#!.

Since slow dynamics mainly results from the combinat
of weighting the Markovian chain with Boltzmann weigh

FIG. 1. Reduced temperatures of spinodal pointskT1 /z(11s)
andkT2 /z(11s) together with the reduced transition temperatu
kTc /z(11s) as a function ofq in the MF approximation.
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and using local updates, there have been several attemp
devise efficient update algorithms based onglobal updates,
e.g., cluster algorithms, which in the case of continuous tr
sition decrease critical slowing down by several orders
magnitude~see@46,47#; also a LR implementation in@29#!.
On the contrary, multicanonical methods@35–37,48# are
based on random walks in the energy landscape, irrespe
of the particular move update utilized, whereby aflat energy
distribution is now sampled. First, this results in the alg
rithm quickly sampling a much wider phase space than in
canonical case, by allowing the system to cross any f
energy barrier. Second, this allows the density of states to
computed over the whole energy axis, thus extending
reliability of reweighting procedures over a much wid
range of temperature than in the case of standard histog
methods@49#, where poor histogram sampling at low ener
usually induces strong statistical bias. As opposed to mu
histogramming@50#, a single run is needed to cover the e
ergy range of interest. Once a reliable estimate of the den
of state has been obtained, it is then straightforward to co
pute thermodynamical functions otherwise hardly with
reach of canonical simulations, e.g., canonical entropy
free energy. It is noteworthy that this simulation techniq
actually belongs to a larger class of algorithms cal
generalized-ensemblealgorithms, which encompasses va
ants based on random walks in the entropic variable~‘‘1/ k
ensemble’’ or ‘‘entropic sampling’’ algorithms@51,52#!, or
the temperature variable~e.g., ‘‘simulated tempering’’
@53,54#!.

A. Rationale

The rationale behind the multicanonical algorithm is t
generation of a Markovian chain of states$s i%, whose
weightsWmu„E(s i)… are tweaked so that one eventually ge
a flat energy histogram, i.e., ifP(E) denotes the probability
in energy andn(E) is the density of states,

Pmu~E!}n~E!Wmu~E!5const.

Since n(E) usually increases drastically with energy, low
energy states are thus sampled much more often than h
energy ones.

Following Berg in@55#, we computeWmu(E) through an
iterative procedure, starting from an initial canonical simu
tion at inverse temperatureb0 . b0 indirectly sets the energy
below which the energy histogram is to be flat, i.e.,Emax
5^E&b0

. Thus,kT051/b0 must be chosen high enough
ensure that the final energy histogram spans a suitably l
energy range upward, e.g., reaches the energy of the d
dered phase in the case of a first-order transition, and exte
even further away if one wants to observe with satisfyi
accuracy the free energy plateaus signaling the limit of me
stability. For convenience, we now define an effecti
HamiltonianHmu(E), so that

Wmu~E,b0!5e2b0Hmu(E).

Hence, multicanonical simulation can be envisioned as a
nonical simulation at inverse temperatureb0 with the usual
9-4
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
Boltzmann weight, provided the original Hamiltonian is r
placed by an effective Hamiltonian to be determined ite
tively. As a side note, a cluster implementation in the fram
work of the multicanonical algorithm is thus far les
straightforward, since this effective Hamiltonian has fund
mentally a global nature, whereas canonical simulations
plicitly preserve the locality of the original Hamiltonian~see,
e.g., the multibond approach in@38,48#!.

Denoting Hmu
` (E) as the true estimate of the effectiv

Hamiltonian, we may thus write

n~E!}eb0Hmu
` (E).

The microcanonical inverse temperatureb(E) may be easily
related toHmu

` (E), as we have~assumingk51)

b~E!5
d ln n~E!

dE
5b0

dHmu
` ~E!

dE
.

Since the dynamics of the Markovian chain is governed
the transition rate W(a→b)5min„1,exp$b0@Hmu(Ea)
2Hmu(Eb)#%…, we may write, for two states infinitely close i
energy, i.e., wheneverEb5Ea1dE, W(a→b)5min„1,exp
@2b(Ea)dE#…. Hence it is themicrocanonical temperature,
which is the relevant quantity where the dynamics~e.g., the
acceptance rate! of the multicanonical algorithm is con
cerned.

B. Iteration scheme

We initially set Hmu
0 (E)5E, or equivalently b0(E)

5b0, as this indeed corresponds to a canonical simulatio
temperature 1/b0. At step i, a simulation is performed usin
a Boltzmann weight with effective HamiltonianHmu

i (E);
then an energy histogramNi(E) is eventually computed us
ing independent samples. Incidentally, taking truly indep
dent samples proves useful during the late stages of th
eration scheme only, where the aim is then to refine a ne
flat histogram. During early iteration steps, histograms m
be computed using nonindependent samples without sig
cantly affecting the convergence. We now denoteEmin

i as the
lowest energy level that was reached throughout the prev
runs, including stepi: this is the energy level below whic
Hmu

i 11(E) will have to be predicted, since no histogram da
are available inside this energy range. Issues regarding
equate predictor choice will be considered later on in t
section. The rules for updatingHmu

i 11 at stepi 11 from Hmu
i

at step i are based on the following equations. ForE
>Emax, Hmu

i 11(E)5E, i.e., the dynamics is canonical-like a
inverse temperatureb0 for all iteration steps. ForEmin

i <E
,Emax,

b i 11~E!5b i~E!1
ĝ0

i

dE
ln

Ni~E1dE!

Ni~E!
, ~2!

where
02610
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g0
i

(
k51

i

g0
k

and g0
k is a raw inverse damping factor proportional to th

reliability of the kth histogram. It has been shown in@55#,
following an error calculation argument, that

g05
N~E!N~E1dE!

N~E!1N~E1dE!

provides an estimator proportional to the inverse of the v
ance ofb i 11(E). Onceb i 11(E) is known,Hmu

i 11(E) is de-
rived by a mere integration starting from the initial conditio
Hmu(Emax)5Emax. Finally, for E,Emin

i , Hmu
i 11(E) will

have to be computed using a suitably chosen predictor, u
at last Emin

i becomes equal to the ground state energy
cubic spline is then fitted toHmu(E) at every bin center, and
this curve is used to compute acceptance probabilities du
the next run.

It can be seen that Eq.~2! leads to a steady state whenev
N(E) is constant over the energy range of interest. Writin
recursion equation involvingb(E) instead ofHmu(E), to-
gether with the inclusion of a damping factor, allows one
handle the situation where some bins have null entries, a
which otherwise leads to a fairly spiky graph forHmu(E)
and inconsistent dynamics.Accidentalnull entries at energy
valuesE or E1dE will simply leaveb(E) unchanged, and
the corresponding parts ofHmu(E) thus move as a block
Since acceptance rates hinge on the microcanonical temp
ture, this in effect drastically reduces bias on the dynam
Considering a small set of histogram bins that are copiou
filled for the first time during a given iteration run~e.g.,
high-energy bins during the early iteration runs whenever
begin with a canonical simulation!, we see that the relate
cumulativeinverse damping factor first soars and produce
great amount of change inb(E) in the couple of runs tha
follow, and then decays progressively to zero as these
continue to be filled. By taking into account all the data th
have been sampled up to stepi, this modified recursion both
clearly stabilizes the algorithm and reduces relative err
due to poor histogram sampling.

Choosing the most appropriate value of the histogram
width results from a trade-off between resolution and co
putation time. A higher resolution on the one hand guar
tees good histogram flatness, and is especially crucial at
energy levels, where the density of state displays a rug
graph. On the other hand, we impose a fixed number of
dependent samples per histogram bin, so as to give the
togram variance an acceptably low value; hence a lowdE
implies more simulation steps per iteration. Our approach
thus to first choose a fairly highdE, e.g., one yielding
around 20 bins, during the early stages of the iteration p
cess in order to obtain a rough picture of the density
states, and then to progressively reducedE once the ground
state has been reached. As will become obvious in Sec. IV
the ultimate value ofdE deeply affects the attainable prec
sion on the computation of spinodal points, since the latte
9-5
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based on a precise location of free energy plateaus, and
indeed entails having enough bins belonging to a given
teau. As a rule of thumb, the best compromise is then
obtain between 100 and 300 histogram bins in the final sta
with the number of bins increasing as thes value corre-
sponding to the second-order regime is approached.

In this view, the unequal spacing of energy levels in L
spin models deserves specific attention. As witnessed in
2, large energy gaps separate isolated energy levels or
groups thereof in the vicinity of the ground state, whereas
distribution gradually turns into a near continuum aboveE
;21025. Setting a lowdE value leads in turn tononacci-
dentalnull entries in those bins located inside energy ga
wherebyb(E) never gets updated at isolated energy lev
andg0 is always zero. Since the graph of the density of st
looks indeed fairly wrinkled near the ground state, and
dynamics there is noticeably sensitive to even the sma
departure ofHmu(E) from the ideal line, we would then
observe a sharp steady peak in the lowest part of the en
histogram, which the present recursion would not be abl
suppress. One could trivially think of working this out b
implementing variable-width bins that would span ener
gaps. This is, however, impracticable since the distribution
energy levels is not known prior to starting the iteration p
cess~for this is precisely what we intend to compute with t
density of states!. To circumvent this limitation, we have
modified the previous recursion so that null entries are
ways skipped, however accidental or nonaccidental they m
be. Denoting byEa and Eb , with Ea,Eb , the centers of
histogram bins located on each side of a set of contigu
empty bins, we have

b i 11~Ea!5b i~Ea!1
ĝ0

i ~Ea!

Eb2Ea
ln

Ni~Eb!

Ni~Ea!
, ~3!

where b(Ea)5b0$Hmu(Eb)2Hmu(Ea)% and we now im-
pose

g0~Ea!5
N~Ea!N~Eb!

N~Ea!1N~Eb!
;

FIG. 2. Lowest energy levels forq55, s50.5, N5400, com-
puted by sorting energy samples from a long simulation run. E
level is drawn as a horizontal line.
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henceg0 can never be zero. In order to avoid losing deta
of the shape ofHmu(E) for Ea,E,Eb that were possibly
collected during previous runs, we updateHmu(E) through a
linear difference scheme,

dHmu~E!5
dHmu~Eb!2dHmu~Ea!

Eb2Ea
~E2Ea!1dHmu~Ea!,

wheredHmu(E)5Hmu
i 11(E)2Hmu

i (E). While this has obvi-
ously no effect where nonaccidental null entries are c
cerned, this favors quicker convergence during the early r
where the inadequate shape ofHmu(E) is more likely to
produce empty bins.

The iteration process stops whenever the energy hi
gram has become suitably flat over the energy range of
terest, namely, between the ground state energy andEmax for
our purpose. We evaluate this property by computing
standard deviation of histogram entries, as well as the s
quantity for the logarithm of histogram entries restricted
nonempty bins. The latter seems to be a better indicator s
it is sensitive to both poorly populated bins and histogr
peaks, whereas the former increases only with rather sp
histograms. In addition, we estimate the degree of conv
gence of the algorithm by computing the mean square
tance betweenHmu

i (E) and Hmu
i 11(E) after the ground state

has been reached. We then compute a threshold value
each indicator by trial and error, based on a couple of sh
runs for various lattice sizes and bin widths.

C. Reweighting procedure

Once Hmu(E) has been satisfactorily computed, a lon
production run is performed using this effective Hamiltoni
in place of the original one, and then estimates of thermo
namical quantities of interest at inverse temperatureb are
computed using a reweighting scheme, i.e., formally,

^A&b5

(
E

^A&En~E!e2bE

Z~b!
,

where^A&E denotes the microcanonical average ofA at en-
ergy E, and the partition function is given byZ
5(En(E)e2bE. The best estimate for the density of stat
n(E) is provided by n(E)}N(E)eb0Hmu(E), where N(E)
stands for the number of bin entries at energyE computed
from the production run. In order to avoid numerical ove
flows, as well as to suppress bias resulting from poss
strong variance on microcanonical averages, we foun
more appropriate to computêA&b from a sum running
over samples instead of energy bins, i.e.,^A&b
5( iAiw(Ei)/( iw(Ei), wherew(Ei)5eb0Hmu(Ei )2bEi2K. K
is then determined so as to avoid both numerator and
nominator overflows. Providing that the histogram samp
during the production run is flat to a good approximation, t
maximum in eb0Hmu(E)2bE is reached wheneve
dHmu(E)/dE;b/b0, which yields the energy value a
which K is to be computed. In addition, since the reweig
ing scheme involves an exponential contribution ofHmu(E),

h

9-6
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the resulting curveeb0Hmu(E)2bE is strongly peaked aroun
the maximum; hence it is clear that only histogram points
the vicinity of this maximum contribute tôA&b . In effect,
we found that the existence of two distinct maxima,
equivalently of two energy values for whichb(E) has the
same value, coincides with the occurrence of a first-or
phase transition.

Following the same reweighting procedure, we comp
partial free energy functions, i.e.,F(b,m) where m is the
order parameter, and reweighted histograms of the ene
i.e., Nrw(b,E). The partial partition function is straightfor
wardly derived from a partial sum over samples having
prescribed order parameter,

Z~b,m!5(
i

eb0Hmu(Ei )2bEidm,mi
, ~4!

which then yieldsF(b,m)52 ln Z(b,m)/b. Similarly, a re-
weighted histogram of the energy is obtained fro
Nrw(b,E)5N(E)eb0Hmu(E)2bE.

D. Predictor choice

We now discuss some issues related to the choice o
efficient predictor forE,Emin . For small lattice sizes, we
initially feed the algorithm with an effective Hamiltonia
Hmu(E)5E, and the objective is then to find an appropria
trade-off between speeding up the convergence ofEmin

i to-
ward the ground state and avoiding algorithm instabil
While the former demands thatHmu

i (E) have a sufficiently
high slope belowEmin

i , the latter still requires that the algo
rithm remain ergodic to a suitable extent. Our implemen
tion relies on a first-order predictor,Hmu(E)5a1bE, and
we impose continuity onHmu(E) at Emin . The simplest ap-
proach is then to choose a predictor slope so that contin
on Hmu8 (E) is enforced atE5Emin , i.e., b5b(Emin)/b0.
While Emin reaches the ground state rather quickly using t
predictor, the dynamics often gets locked in very low ene
levels due to the particularly steep slope ofHmu(E) in the
vicinity of the ground state. The time needed by the iterat
scheme to recover from this deadlock and obtain a flat
togram thus becomes prohibitive. On the other hand, cho
ing b51 leads to the smoothest yet slowest convergen
and avoids deadlock issues. An efficient compromise is t
to ensure a ‘‘weak’’ continuity atEmin , i.e., by computing
the slope of the predictor using a least-squares scheme b
e.g., on the first 10% of points aboveEmin .

For large lattice sizes where reaching the ground s
energy can become time consuming, we resort to a ‘‘sca
trick’’ whereby Hmu(E) is initially guessed from the densit
of states obtained at a smaller lattice size. This approach
initially mentioned by Berg and Neuhaus@37#, and claimed
to work perfectly within the framework of a study of th
two-dimensional ten-state Potts model with nearest-neigh
interactions where the energy is additive to a perfect ext
The presence of LR interactions, however, slightly wors
the case, especially at lows. The scaled density of states
computed as follows. Let us consider, for the sake of s
plicity, two systemsS and S̄ with respective lattice sizesL
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5N and L̄52N, and let us divide the latter into two sub
systems S1 and S2 of equal size L. Since Hmu(E)
5kT0ln n(E), wheren(E) stands for the density of states, w
have to computen̄(E) for S̄ as a function ofn(E) for S.
Neglecting the interaction between subsystemsS1 and S2,
and denoting byE1 the energy ofS1, the density of states
for S̄ just readsn̄(E).(E1

n(E1)n(E2E1), which yields

b0H̄mu~E!. ln(
E1

eb0[Hmu(E1)1Hmu(E2E1)]

; ln
1

dEE dE1eb0[Hmu(E1)1Hmu(E2E1)] ,

wheredE is the energy histogram bin width. Providing th
n(E) is a monotonic and rapidly increasing function ofE, we
may use a saddle-point approximation to evaluate the for
sum. The maximum ofHmu(E1)1Hmu(E2E1) is reached
wheneverE15E/2; hence

H̄mu~E!.2HmuS E

2 D1kT0ln
Ap/uHmu9 ~E/2!u

dE
. ~5!

This expression may be readily extended to lattice si
that are any multiple of the original size. Figure 3 sketch
results obtained forq55 ands50.3, 0.5, and 0.9. A serie
of iteration runs was first conducted withL5200 spins in
order to obtain an estimate ofHmu(E) for this lattice size,
then this estimate was scaled using Eq.~5! and used as the
initial guessH̄mu(E) for the next series of iteration runs a
L5400. Equation~5! yields a very acceptable guess fors
50.9, and the two curves are hardly distinguishable fr
each other. As illustrated in Fig. 4, the energy histogr
becomes nearly flat within five iterations. Fors50.3 and
0.5, the agreement remains quite satisfying, yet the ini
guess falls slightly below the true estimate at low ene
levels, and the lowest-energy bins are exceedingly enhan
during the first iteration runs. More iteration runs are th

FIG. 3. Data points indicate the initial guessesH̄mu(E) that
were fed into the iteration scheme atL5400, q55, and s
50.3(L), 0.5(1), 0.9(h). Each initial guess was computed u
ing Eq. ~5!, i.e., by scaling a true estimate obtained atL5200.
Solid lines show true estimates ofHmu(E) as obtained after the
whole iteration scheme atL5400 converged. The straight dashe
line sketches the original Hamiltonian, i.e.,Hmu(E)5E.
9-7
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required to obtain a perfectly flat histogram ass is de-
creased, and the benefit of this approach in effect beco
negligible for s<0.3. Indeed, the algorithm then spends
great number of iteration steps being trapped in low ene
levels, seeking to rectify the shape of the density of state
this energy region until convergence is obtained: start
from an initial canonical effective Hamiltonian actual
yields better performances. Since, for systems with LR in
actions, computation time scales withL2, using this ‘‘scaling
trick’’ thus greatly reduces the time needed for proper c
vergence, at least fors.0.3, and partially compensates fo
the lack of a hybrid multicanonical-cluster algorithm ded
cated to LR models.

E. Algorithm performance

In order to measure the performance of our implemen
tion, we have computed a dynamical exponentz defined as
the scaling exponent of a relevant characteristic timet of the
simulation, i.e.,t}Lz, whereL denotes the lattice size: whil
for second-order transitions it is widely known that the in
grated autocorrelation time represents such a relevant t
for first-order transitions the tunneling time through the e
ergy barrier (t tun) proves to be a more meaningful indicat
@38#. We define the latter as one-half of the average num
of Monte Carlo steps per spin~MCS! needed to travel from
one peak of the reweighted energy histogram@Nrw(b,E)# to
the other, with the temperature being set to the transi
temperature. Tunneling time is expected to grow expon
tially with L for canonical algorithms, and to scale as
power law ofL for multicanonical algorithms@37#. In both
cases, it appears that the chosen characteristic time is a
indicator of how quickly the demands on CPU time shou
grow with increasing lattice size: for second-order tran
tions, this is the time needed to generate truly independ
samples, while for first-order transitions, this tells us at w
rate the dynamics spreads out over the energy barrier
thus to what extent samples get efficiently picked from
two phases in coexistence.

The integrated autocorrelation time is computed by us
the well-known time-displaced correlation function whic
displays an exponential-like short-time behavior, name

FIG. 4. Energy histogram as computed after indicated runs,
q55, s50.9, L5400 spins, using Eq.~5! to compute the initial

effective HamiltonianH̄mu(E) from a previous run atL5200 spins.
Labeling ony axis indicates normalized probabilities.
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Fmm(t);e2t/t; t is then derived from a simple integratio
scheme. Since the latter function makes sense within e
librium only, we first discardn thermalization steps, wheren
is obtained by using the nonlinear relaxation function th
describes the approach to equilibrium@43# and averaging
over several dry runs. An interesting point regarding mu
canonical simulations is that, since they are random walk
energy space, ‘‘thermalization’’~although this term is no
longer appropriate as far as generalized ensemble algorit
are concerned! always occurs rather rapidly; simulation
based on a nearly flat histogram have shown that a valu
1000 MCS is indeed appropriate on average.

Results forq57 and s lying between 0.2 and 0.8 ar
shown in Fig. 5 for integrated autocorrelation times, and
Fig. 6 for tunneling times. The slight dispersion in th
power-law fits arises from the fact that simulations at larg
sizes were conducted with a higher number of MCS betw
measurements in order to reduce memory overhead. W
computing tunneling times is concerned, this results in so
tunneling events being possibly skipped and the average
neling time being overestimated. Both figures show, ho
ever, that a power-law behavior is perfectly plausible. In
case of first-order transitions, the reduction in simulati
costs is thus drastic in comparison with standard canon
algorithms.

For both indicators, we obtain an averagez slightly above
1.0 for s50.2, yet z increases smoothly with decreasin
range of interaction. This may be accounted for by the f
that spatial and time correlations grow as we depart from

r

FIG. 5. Integrated autocorrelation timet vs lattice sizeL for q
57 ands50.2, 0.4, 0.6, 0.8. Dynamic exponents computed fro
a fit toLz arez51.09(1), 1.15(1), 1.38(1), 1.55(1), respectively.

FIG. 6. Tunneling timet tun vs lattice sizeL for q57 ands
50.2, 0.4, 0.6, 0.8. Dynamic exponents computed from a fit toLz

arez51.25(1), 1.30(2), 1.37(1), 1.53(1), respectively.
9-8
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
MF regime and approach the SR one. As for tunneling tim
the prefactor turns out to be slightly higher near the M
regime, andz increases at a lower rate with increasings than
is the case for autocorrelation times.

Since there are no other numerical studies of LR mod
based on multicanonical algorithms to our knowledge, co
parison is limited to estimates obtained for SR models.
the three-state Potts model, canonical simulations using l
updates led toz52.7 @56#, while Swendsen and Wang ob
tainedz;0.6 using their percolation cluster algorithm@46#.
For further comparison, the Metropolis algorithm applied
a SR Ising chain ind52 and d53 yielded a value ofz
slightly above 2@57#, whereas Wolff’s cluster algorithm led
to z;0.27 @58#. While our value is slightly greater than i
the case of cluster implementations, it is worth underlin
that our multicanonical implementation yields reliable sta
tics within a single MC sweep, whereas several are neede
the case of a standard canonical simulation, whatever
weighting procedure may be used.

IV. NUMERICAL RESULTS

We have conducted multicanonical simulations forq
P@3,9#, using for each value ofq an appropriate set ofs
parameters between 0.3 and 0.9, so that we could obs
strong and weak first-order transitions, as well as continu
ones. Forq53, some simulations were performed withs
.1.0 in order to investigate the crossover from LR to S
regimes. Once the density of states had been determine
ing the iteration process described above, a production
was performed for lattice sizes betweenL550 and L
5400. The number of MC sweeps needed for each prod
tion run was computed so as to yield approximately 53104

truly independent samples. In this view, rapidly increas
autocorrelation times in effect restricted our work to latti
sizesL<400.

A. Free energy functions and FSS

As already stated in the Introduction, a precise determ
tion of the tricritical valuesc(q) is a real challenge, due t
the weakening of the first-order transition assc is ap-
proached from below. This makes traditional indicators, e
latent heats or energy jumps, fairly inefficient, since obse
ing clear jumps in the vicinity of the tricritical value entai
simulating huge lattices. Glumac and Uzelac in@20# used
three less traditional estimators, namely, the interface
energy, the specific heat, and the reduced fourth-order Bin
cumulant, which all turned out to be less sensitive to t
weakening: in particular, the last quantity defined asUL
5^E4&/^E2& is expected to reach a nontrivial constantU`

Þ1 asL→` at a first-order transition only@59#; by extrapo-
lating to the thermodynamic limit from measures taken
different lattice sizes, they foundsc to fall between 0.6 and
0.7 for the three-state model. Still and all, this approach
poses simulation of fairly large lattices~aroundL53000) for
the extrapolation procedure to be reliable, let alone the
that Binder cumulants may experience uncontrollable cro
over effects@60#. Due to the modest lattice sizes that a
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within reach of our local update algorithm, we rather res
to an approach based on the location of spinodal poi
which may be accurately determined already for medium
tice sizes. In marked contrast to multihistogram techniqu
the multicanonical method indeed allows one to obtain p
tial free energy functions~or, equally, reweighted histogram
of the energy! over a range of temperature which exten
fairly far away from the transition temperature, with remar
ably modest numerical effort.

The basis of our method relies on the fact that the te
perature difference between the two spinodal points will te
to zero assc is approached, since there are no metasta
states in the case of continuous transitions. Stated differe
the conditions under which metastability occurs, i.e., b
first and second derivatives of the partial free energy
zero, are met only at the critical point for a continuous tra
sition: hence metastable states merge into a single large m
mum as the first-order transition turns into a second-or
one. Such behavior has indeed been widely observed,
for liquid-vapor transitions near the critical point, and
borne out by our MF calculation.

For a given set of (q,s) parameters, we determine th
location of the spinodal points by first computing a part
free energy function of the order parameter@F(kT,m); see
Eq. ~4!# over a large temperature range. Alternatively, w
make use of a similar function of the energy, i.e
Fe(kT,E)52 ln Nrw(kT,E), where Nrw(kT,E) denotes the
reweighted histogram of the energy. While the latter funct
plays the same role as the partial free energy of the mag
tization, it yields a higher precision at lowq, as we will
witness in a moment. The limit of metastability at finite la
tice size is then defined bydFe /dE5d2Fe /dE250, or al-
ternatively dF/dm5d2F/dm250: for a first-order transi-
tion, this condition is met at two temperaturesT1 and T2
which satisfy the inequalityT1,Tc,T2, whereTc denotes
the transition temperature.

Since these free energy functions usually have rather
ged graphs, we first filter out rapid oscillations by means o
linear smoothing filter, whose order is computed so that
are left with at most three extrema over the whole tempe
ture range of interest. By continuously varyingkT within this
range, we determine the temperature of each metastable
by monitoring the change in the number of minima~see Fig.
7!. In contrast to@20#, the transition temperatureTc(L) is
then obtained by imposing that the number of bin entries
Nrw(E) be the same below and above the energy correspo
ing to the maximum ofFe(kT,E). This corresponds to the
so-called equal-weights condition as proposed by Lee
Kosterlitz in @60#, and is equivalent to the condition that th
average energy be the arithmetic mean of the energy of e
phase. For the sake of comparison, however, we also c
pute the temperatureTeqh(L) at which both minima of
Fe(kT,E) have the same value. We then proceed with
computation of similar quantities usingF(kT,m), and we
estimate statistical errors using a bootstrap procedure.

Graphs of the free energyFe(kT,E) in Fig. 7 show that
the peak and the plateau corresponding to the disord
phase are much narrower than those of the ordered phas
a result, the precision in the determination of the tempera
9-9
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S. REYNAL AND H. T. DIEP PHYSICAL REVIEW E69, 026109 ~2004!
T1 of the lowest metastable state is fairly lower than that
the upper metastable state (T2). This asymmetry increase
with increasingq, and in effect precludes the use of r
weighted histograms for the estimation of spinodal points
q.7. Forq59, we thus relied on the extrema of the part

FIG. 7. Graphs ofFe(kT,E)52 ln Nrw(kT,E) for q55, s
50.3, N5400, at four characteristic temperatures:T1 ,T2 ,Teqh,
andTeqw5Tc denote the temperatures of the two metastable sta
and the temperature of equal peak heights and that of equal
weights, respectively.E/L denotes the energy per spin.
02610
f

t
l

free energyF(kT,m), since this function then become
nearly symmetric and displays peaks that are well separa
Incidentally, the asymmetric shape ofFe(kT,E) can be ac-
counted for by the fact that specific heats have a differ
magnitude in the disordered and ordered phases, since

FIG. 8. Average energy per spin forq53, s50.2, L5400,
computed over both phases~solid line!, ordered phase only~lower
dashed line!, and disordered phase only~upper dashed line!. Verti-
cal dotted lines indicate the four characteristic temperatures: f
left to right, lower limit of metastability (kT1), transition tempera-
tures~equal heightskTeqh, then equal weightskTeqw), and upper
limit of metastability (kT2).
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TABLE I. Estimates of the critical temperature in the first- and second-order regimes~the latter is indicated by an asterisk!: MF, mean
field; x, using location of peaks of the susceptibility;U (4), using crossing points of Binder cumulants of the magnetization; eqw,eqh, u
the free energy, whereTc corresponds to equal peak weights and heights, respectively; Ref.@20#, MC study based on multihistogrammin
and the Luijten-Blo¨te cluster algorithm (q53) and a standard Metropolis algorithm (q55); Ref. @19# cluster mean-field method combine
with an extrapolation technique based on the VBS~Vanden Broeck and Schwartz! algorithm; Ref.@14#, transfer matrix method combine
with FRS.

q s Tc~MF! Tc(x) Tc(U
(4)) Tc~eqh! Tc~eqw! Tc ~Ref. @20#! Tc ~Ref. @19#! Tc ~Ref. @14#!

3 0.2 4.034 3.97~1! 3.98~1! 3.94~1! 3.97~1! 3.70a 3.7023
0.3 2.836 2.72~1! 2.72~1! 2.71~1! 2.71~1! 2.70a 2.71669 2.5893
0.4 2.240 2.086~4! 2.089~6! 2.075~5! 2.074~4! 2.08a 2.0247
0.5 1.884 1.691~3! 1.685~3! 1.686~4! 1.684~2! 1.70a 1.68542 1.6631
0.6 1.649 1.44~1! 1.43~1! 1.43~1! 1.43~1! 1.41a 1.4000
0.7 1.482 1.196~3! 1.19~1! 1.18~1! 1.19b 1.1968 1.1942

0.8* 1.358 1.019~4! 1.03~1! 1.01b 1.0231
0.9* 1.262 0.876 0.875 0.88b 0.8785 0.874

5 0.3 2.127 2.07~1! 2.07~1! 2.072~6! 2.070~4! 2.033a 2.06900 1.736
0.5 1.413 1.321~3! 1.319~4! 1.319~3! 1.319~2! 1.297a 1.31638 1.245
0.7 1.111 0.973~1! 0.973~2! 0.970~3! 0.970~2! 0.981a 0.96963 0.956
0.8 1.018 0.854~1! 0.853~1! 0.857~1! 0.857~1! 0.844

0.9* 0.947 0.743~2! 0.739~4! 0.74673 0.745
7 0.2 2.600 2.58~1! 2.58~2! 2.578~2! 2.577~1!

0.4 1.444 1.395~5! 1.394~4! 1.394~1! 1.393~1!

0.6 1.063 0.986~2! 0.985~3! 0.984~1! 0.986~1!

0.8 0.875 0.764~1! 0.763~1! 0.764~1! 0.764~1!

0.9 0.814 0.677~1! 0.676~1!

9 0.2 2.353 2.33~1! 2.33~1! 2.33~1! 2.32~1!

0.3 1.655 1.626~3! 1.625~4! 1.627~3! 1.626~1!

0.5 1.099 1.052~2! 1.051~2! 1.050~3! 1.052~1!

0.7 0.864 0.793~2! 0.792~2! 0.794~2! 0.794~1!

0.8 0.792 0.705~2! 0.704~1! 0.704~1! 0.704~1!

aRefers to 1/Ke(DF).
bRefers to 1/Ke(U

(4)).
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
thermodynamic quantity is simply proportional to the sta
dard deviation of the associated Gaussian peak@59#. This
may be readily observed by reweighting thermodynam
averages over a single phase at a time, once the maximu
Fe(kT,E) which separates the two phases has been loca
Figure 8 shows how this procedure was applied to the c
putation of the mean energy per spin of each subphase
q53,s50.2, andL5400 spins. A simple visual inspectio
allows one to assess a much lower specific heat for the
ordered phase than for the ordered phase.

At finite lattice size, however, all these temperatures
perience a distinct shift proportional to the distance from
thermodynamic limit. Assuming that the FSS theory dev
oped in@59# for first-order transitions is also valid in the LR
case, we therefore compute temperatures at infinite la
size by assuming power-law corrections in 1/L. We also ex-
pect temperatures defining the limit of metastability to ob
the same scaling behavior, although the phenomenolog
theory proposed in@59# does not explicitly handle them. Th
inclusion of a second-order term proves necessary in orde
obtain satisfying fits, due to the presence of small latt
sizes in our set of data. Yet, interestingly enough, fitti
finite-size temperatures to a power law of the formT(L)
5T(`)1aLb yields very similar extrapolated values, wit
discrepancies smaller than 0.1%, i.e., within our range
uncertainty. In addition, we observed thatFe(kT,E) and
F(kT,m) led to distinct finite-size shifts, with the latter func
tion easily allowing one to drop second-order correct
terms without much affecting the final result.

B. Transition temperatures

For the sake of completeness, we also compute trans
temperatures by relying on two other estimators, namely,
magnetic susceptibility, which for magnetic systems h
more pronounced peaks than the specific heat, and Bi
cumulants of the magnetization defined asU (4)51
2^m4&/(3^m2&2). The latter are known to cross at a critic
fixed point U

*
(4) defining the true critical temperature, ye

since the crossing point drifts smoothly over our range
lattice sizes, we assume a power law of the formLw for
U (4)(L), with an unknown exponentw @61#. In addition,
these two quantities are advantageously used to obtain
cal temperatures in the second-order regime as well~see Sec.
IV E for more details on this issue!.

Results for all temperature estimates are summarize
Table I for q53,5,7,9, and sketched in Fig. 9 forq55. As
expected according to FSS theory, both definitions of
transition temperature, i.e., using equal peak weights
equal peak heights, lead within error bars to the same e
mates at infinite lattice size. Other quantitiesTc(x) and
Tc(U

(4)) yield very similar results, with a discrepancy nev
exceeding 1%.

For all values ofq, the transition temperatures progre
sively depart from the MF line ass is increased. Forq
55, for instance, the ratio betweenTc(x) and the MF value
ranges from 97.3% ats50.3 to 83.9% ats50.8. We further
notice that, for a given range of interaction, the adequacy
MF results is clearly improved at highq. As illustrated in
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Fig. 10 for q59, s50.3, andL5400, this agreement als
holds, even at finite lattice sizes, for the shape of the pa
free energyF(kT,m) and the position of metastability pla
teaus. Forq53 andq55, we can readily compare the tran
sition temperatures with earlier MC studies. Results obtai
in @20# using either the Luijten-Blo¨te cluster algorithm (q
53) or a standard Metropolis algorithm (q55) are in fairly
good agreement with ours within an error bar that does
exceed 1%, except in the cases50.2, where our estimate
lies much closer to the MF prediction. We further compar
our estimates with those obtained in@19# using a cluster
mean-field method, and in@14# using a transfer matrix ap
proach. As illustrated in Table I, results obtained using
cluster mean-field approach combined with the VBS extra
lation algorithm yield a perfect match, with a deviation
low as 0.1% on average over the whole range ofs values.
The discrepancy with estimates obtained using the tran
matrix method is slightly higher and amounts to 2% on a
erage, except for low values ofs where the agreement of ou
results with the MF prediction is, here again, far better.

C. Change of regime

As can be viewed in Fig. 9, spinodal points merge sligh
aboves;0.8 for q55, and this indeed signals a change
the nature of the transition. By plottingdkTm5kT22kT1
against 1/s, we observe that for all values ofq the points fit

FIG. 9. Spinodal curve for 0.3<s<0.8 (q55). The transition
temperatureTc is indicated by filled squares, and the limits of met
stability T1 andT2 by triangles and diamonds, respectively. Erro
are smaller than the size of symbols, and lines are drawn to g
the eyes. The dotted line shows the transition temperature as
dicted by MF theory.

FIG. 10. Partial free energyF(kT,m) for q59, s50.3, L
5400 ~solid line!, together with the MF prediction~dashed line! as
given by Eq.~1!.
9-11
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S. REYNAL AND H. T. DIEP PHYSICAL REVIEW E69, 026109 ~2004!
quite well on a line for low enoughs, and the slope of this
line tends toward that of the MF curve. The caseq57 is
sketched in Fig. 11, where it is clear that the point ats
50.6 marks the border between the linear and nonlinear
havior, illustrating the weakening of the first-order transiti
as sc is approached. Since temperatures appear to sca
1/s in the vicinity of the MF regime, it is thus more appro
priate to work withT1 /Tc andT2 /Tc , for the scaling factors
will then cancel out neatly except when approachingsc(q).
As mentioned above, the latter ratio, which is sketched
Fig. 12, offers a higher precision through a larger free ene
plateau. Ass falls off to the MF regime, this ratio tends
within error bars, to the value predicted by the MF theo
i.e., T2 /Tc51.01, 1.037, 1.059, 1.077 forq53, 5, 7, 9,
respectively. On the leftmost side of the graph, we witnes
sharp decrease ofT2 /Tc ass→sc . This brings a quite reli-
able way of determiningsc(q) without much ambiguity, as
opposed to, e.g., methods using the interfacial free energ
Binder cumulants. By fitting data points to a polynomial
degree 2 forq55,7,9, and of degree 3 forq53, which
turned out to yield the lowest error, we obtained the follo
ing numerical estimates:

FIG. 11. Difference between temperatures of metastab
dkTm5kT22kT1 vs 1/s for q57 ~circles connected by solid
lines!. Errors are smaller than the size of symbols. MF prediction
shown for comparison~dashed line!.

FIG. 12. T2 /Tc vs 1/s for q53, 5, 7, 9. Solid lines indicate
polynomial fits. Dotted lines are guides to the eyes. Error bars
smaller than the size of symbols, except where explicitly indica
02610
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q sc

3 0.72~1!

5 0.88~2!

7 0.94~2!

9 0.965~20!

The graph ofsc(q) is sketched in Fig. 13 for convenienc
Considering the global shape of this graph, it is reasonabl
expectsc(q)→1 asq→`. This would be clearly consisten
with Cardy’s scenario~as mentioned in the Introduction!,
according to which the border cases51.0 corresponds to a
KT-like transition governed by topological defects.

D. Unexpected FSS behavior of correlation lengths and the
dynamics of first-order transitions

Let us now briefly inspect the caseq59,s51.0, where a
simple analysis based on the shape of the free energy
given lattice size might be markedly misleading. In@22#, a
first-order transition forq>9 was reported on the basis o
the observation of a double-peaked energy histogram.
have performed a series of simulations atL
550, 100, 150, 200, 300, and 400 for this set of para
eters and computed corresponding~finite-size! spinodal tem-
peraturesT1(L) and T2(L) using the partial free energ
F(kT,m). As may be noticed in Fig. 14, a striking feature
this limiting case is the existence of metastable states a
finite lattice sizes, with a first-order character strongly e
hanced at low sizes, despite the fact that FSS theory yi
T22T150 in the thermodynamic limit. It turns out that th
transition is clearly not of the first order in the thermod
namic limit, and this feature was also confirmed forq56, 7,
and 8; forq,6, a precise location of metastable states
came impracticable.

At first blush this behavior significantly contradicts th
expected picture, whereby for first-order transitions, the c
relation length is finite and roughly independent of the latt
size, and is merely connected to the size of clusters. A
result, such transitions appear as if they were continu
until the lattice size overtakes the correlation length. W
regard to SR models, this has been the standard scenario
far, yet we feel strongly that this scenario may be somew
challenged, at least qualitatively to begin with, where mod

y

s

re
.

FIG. 13. Phase diagram computed using FSS properties of s
odal points, fors,1.0. Dotted lines are shown to guide the eye
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
incorporating LR interactions are concerned.
To set the stage for an attempt to interpret this behav

we first turn to the consequences of finite lattice size
long-wavelength fluctuations when simulating LR mod
with algebraically decaying interactions. The key point in t
following discussion is the nature of the phase transition
observedfrom numerical data obtained at finite lattice siz
On a lattice of sizeL with periodic boundary conditions, th
largest allowed distance between any two spins isL/2, and
this also corresponds to the smallest interacting potentia
fordable on a given lattice. It is obvious that these sp
experience a stronger interacting potential wheneverL is
small, and hence the whole array of spins may be rigidly t
to an adequate extent for an order-disorder transition to o
through metastability. When increasing the lattice size,
the contrary, spins being a distanceL/2 apart now experience
weaker interaction, and this results in a softening of the tr
sition. Whether this softening might be sufficient to yield
change of nature of the transition at some~either finite or
infinite! lattice size, so that the transition may be continuo
in the thermodynamic limit, is however an unsettled qu
tion; this assumption is borne out at least forq59 ands
51.0, as witnessed by our results. Alternatively, we may
that the truncation of LR interactions at small lattice s
artificially shifts the model toward the MF regime, since t
interacting potential now varies smoothly over the availa
distance of interaction.

As seems obvious to us, the usual physical meaning
tributed to the correlation length in the case of SR mod
i.e., roughly speaking the average size of a cluster of c
tiguous spins having the same value, may no longer hol
the case of LR models: since all the spins of the latti
however distant they may be, are tied together through
interacting potential, there is basically no need of a lon
range order for two distant spins to already have sligh
correlated fluctuations. In the context of first-order tran
tions, this means that either clusters may extend well bey
the size permitted by the value of the correlation length,
the correlation length itself may become infinite in the th
modynamic limit. This behavior has indeed already been

FIG. 14. Linear fit of finite size temperatures vs 1/L for q
59,s51.0. Dotted, solid, and dashed lines correspond tokT1 ,
kTeqh, andkT2, respectively. Error bars are smaller than the size
symbols, except where explicitly indicated. In the limitL→`, the
difference between temperatures of metastability tends to 0.0
Within our error bars, the transition is thus clearly not of the fi
order.
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ported in models of DNA thermal denaturation@62# as well
as in the context of wetting@63#.

In addition, we have performed simulations in the firs
order regime at the finite-size transition temperature.
used, however, a Metropolis algorithm, since the associa
dynamics is closer to the real nucleation or spinodal deco
position picture than with a multicanonical algorithm. W
observed indeed that clusters in the ordered phase alw
spanned the entire lattice, whatever the lattice size. As s
as the dynamics jumps from the disordered to the orde
phase, which we monitored by comparing the energy w
the location of reweighted energy histogram peaks, a sin
cluster forms very rapidly and nudges its way through
crowd of disordered spins so that it swiftly occupies t
whole lattice. Thus, if both phases coexist insofar as, e.g.,
energy histogram has a double-peaked structure, they a
ally do not coexist at the same time and merely alternate
time, as opposed to what is considered the usual SR pic
In this respect, we would like to raise some challengi
questions regarding the dynamics of first-order transitions
the LR case:~i! Since both phases do not coexist at the sa
time, what physical meaning should be given to the inter
cial free energy?~ii ! Does a mechanism similar to nucleatio
take place in a LR system, and if in the affirmative, how c
it be reconciled with the mechanism of cluster growth
volved in SR models?

E. Beyond the tricritical line: From LR to SR behavior

We now focus on some critical properties in the seco
order regimesc(q),s,1.0; then we investigate the cros
over from LR to SR behavior. As mentioned in@64#, ‘‘stan-
dard’’ FSS theory is valid for LR systems provided th
effective upper critical dimensiond* 52s is greater than the
geometrical dimensiond51, i.e.,s.0.5. Thus forq>3 we
assume ‘‘standard’’ finite-size scaling equations to be va
We first determine the critical exponentn using nth-order
cumulants of the magnetization, i.e.,Vn5d ln^mn&/db, which
have minima obeying the scaling lawVn

min}L1/n @65#. Our
approach is to compute two numerical estimates ofn by
fitting reweighted averages ofV1

min andV2
min to a power law

of the lattice size, and then to average over both valu
Other critical exponents, i.e.,b and g, are computed using
similar scaling laws, i.e.,M „Tc(`)…}L2b/n, and xmax

}Lg/n. Figure 15 shows a power-law fit of peaks ofV1 , V2,
and x against the lattice size obtained forq55, s50.9.
Points lie neatly on a straight line when using a log-log sca
and give the following estimates: 1/n150.668(2), 1/n2
50.669(2),g/n50.940(4). Error bars were computed usin
a bootstrap procedure. Oncen is known, we fit the finite-size
temperaturesTc(L) defined from peaks of the magnetic su
ceptibility to a power law of the formTc(L)5Tc(`)
1lL21/n and obtain an estimate of the critical temperatu
With regard to critical couplings obtained from Binder c
mulants of the magnetization, we follow the same proced
as in the first-order regime. Finally, the critical exponentb is
determined by fittingM „Tc(`)… to a power law of the lattice
size, and slowly varying the temperature at whichM is to be
sampled until the best fit is obtained. In the example cons

f

2.
t

9-13



II
e
e

ap
ec

th
n-
-

ts

th

ac
et

s
n
s

we
ies

re-
trix

gy

the

he

t
-
on
tly

re-

are
e of
low

e of
ac-
ing

her-

n-

is
s-
ing
f
hen

m
ef

S. REYNAL AND H. T. DIEP PHYSICAL REVIEW E69, 026109 ~2004!
ered above, this leads tob/n50.103(2). Results for other
pairs of (q,s) values are summarized in Table I and Table
For the borderline cases51.0, only exponent ratios ar
shown. It can be seen that our estimates match fairly w
those obtained from a previous MC study@22#, and that the
discrepancy with results obtained from a transfer matrix
proach in@14# never exceeds 8%. As opposed to the conj
ture made in@18#, the exponentn does clearly depend onq.

If the relations522h derived in@11# is indeed exact for
q>3, we should thus observe the simple behaviorg/n52
2h5s in the second-order regime. As illustrated in the fif
column of Table II, the qualitative behavior follows the co
jecture, yet clearlys,22h, and the discrepancy is remark
ably higher forq55 than forq53. Moreover, while it ap-
pears to shrink to 0 ass→1, it is unclear whetherg/n varies
linearly with s, considering the small number of poin
available.

In order to get a deeper insight into the crossover to
SR regime, we then conducted several simulations atq53
for s above the borderline valuesco51. This value has
been reported to play the role of a critical range of inter
tion beyond which a crossover from LR to SR behavior s
in. According to@16,39#, sco522hSR, wherehSR denotes
the value of theh exponent in the SR case. Sinceg/n51 for
all values ofq in the SR case,hSR51, and this indeed lead
to sco51. It should be noted, however, that this definitio
as initially proposed by Sak in@39# on theoretical grounds, a

FIG. 15. Fit ofV1
min , V2

min , andxmax vs L on a log-log scale,
for L550, 100, 150, 200, 400 (q55, s50.9). Errors are
smaller than the size of symbols.

TABLE II. Critical exponents in the second-order regimes
.sc(q), and q53,4,5. Shown for comparison are results fro
Ref. @14# obtained using a transfer matrix method, and from R
@22# using a MC histogram approach.

q s n21 n21 @14# g/n b/n

3 0.8 0.624~6! 0.574 0.842~5! 0.101~5!

0.9 0.54~1! 0.491 0.908~5! 0.053~5!

1.0 0.96~1! 0.025~8!

4 0.8 0.71~1! 0.67 0.882~3! 0.122~4!

0.9 0.610~5! 0.56 0.920~4! 0.050~3!

1.0 0.96~1! 0.022~9!

5 0.9 0.668~2! 0.62 0.940~4! 0.103~2!

1.0 0.97~1! 0.04~1!

1.0 @22# 0.966 0.017
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well as the exact location ofsco within the interval
@1.0,2.0#, is still controversial. As shown in Table II,g/n
indeed appears to reach its SR value ass→12, yet this ratio
proves no longer reliable above the borderline value, as
will witness in a moment, and reliance on other quantit
becomes necessary.

We first review some exact results concerning the SR
gime, which we obtained using an exact transfer ma
method. Forq53, the transfer matrix is a 333 matrix hav-
ing three eigenvalues, which in zero external field readl1
53 cosh(b/2)2sinh(b/2), l25l352 sinh(b/2), where b
51/kT. By retaining the largest eigenvaluel1 only, and tak-
ing the limit L→`, we successively obtain the free ener
per spin

F~b!52
log~21eb!

b

and the specific heat

Cv~b!5
2b2

@sinh~b/2!23 cosh~b/2!#2
.

From there on, the correlation length is computed using
standard formulaj51/ln(l1 /l2), which then yields

j~b!5F ln
3 coth~b/2!21

2 G21

.

Finally, the magnetic susceptibility is obtained using t
fluctuation-dissipation relation, which gives

x~b!5
8

27
b~112eb!.

It is then straightforward to show tha
limb→`ln x(b)/ln j(b)5g/n51. However, evaluating this ra
tio at finite inverse temperature, i.e., for a finite correlati
length as imposed by a finite lattice size, yields a grea
overestimated result. For instance, we obtaing/n;1.3 for
L5400, a feature which is supported by our simulation
sults, e.g.,g/n51.02(1), 1.14~1!, and 1.23~1! for s51.1,
1.5, and 4.0, respectively. Since the last two values
clearly overestimated, this in effect indicates the presenc
exponential divergences and as a by-product drastically s
convergence of the correction to scaling.

This analysis was corroborated by a study of the shap
the specific heat, which turns out to provide the most tr
table approach at medium lattice sizes where distinguish
between the SR and the LR regime is concerned. In the t
modynamic limit,Cv(b) admits a maximumCv

max50.7618
at kTm50.3767. It is enlightening to investigate the no
monotonic behavior of this maximum at finiteL, and this
may be carried out by computingF(b,L) and thenCv(b,L)
while retaining all three eigenvalues. Since the calculation
fairly involved, and the final result admits no simple expre
sion, we shall hereafter simply refer to the correspond
curve sketched in Fig. 16. WhenL is increased, the peak o
the specific heat first increases to a maximum, and t

.
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REEXAMINATION OF THE LONG-RANGE . . . PHYSICAL REVIEW E 69, 026109 ~2004!
graphs ofCv collapse and merge gently as the thermod
namic limit is approached. Whenever it is witnessed
graphs obtained from simulation data, this feature thus
nals a SR-like behavior.

Simulations were performed for 1.0<s<4.0 for various
lattice sizes betweenL550 andL5400, and we set the ini
tial canonical temperature tokT051.0 so that the maximum
of Cv would be clearly visible within the whole ranges
>1.0. As appears obvious from a glance at Fig. 16, the ca
s51.0 ands51.1, on the one hand, ands>1.2, on the
other hand, display fairly distinct qualitative behaviors. F
s51.0, the specific heat reaches its maximum monoto
cally, at least for the lattice sizes that were investigated.
slowing down in the increase rate as 1/L→0 allows one to
assess a finite maximum in the thermodynamic limit, and
clearly shows thatCv is a nondivergent quantity, thus bring
ing support to Cardy’s scenario whereby the transition ha
KT-like nature on the borderlines51.0. The same behavio
is observed fors51.1. On the contrary, the qualitative be
havior is clearly different fors>1.2, where the maximum o
Cv first decreases with increasing lattice size, and th
quickly reaches a plateau reminiscent of the exact SR be
ior investigated above. While this plateau only slow
reaches the exact SR value ass→4.0 ~see Fig. 17!, we can
however conclude that the behavior is already SR-like. T
assertion can be further confirmed by considering the m
netization, as sketched in Fig. 18. Graphs of this quan
clearly merge slightly abovem50, whenevers>1.2; hence
there is no transition at finite temperature. While fors
51.1 there remains some ambiguity due to statistical err
for s51.0 the curves now clearly intersect aroundkT
;0.7, which at least shows that the behavior is no lon
SR-like. We finally compute critical temperatures from t
crossing points of Binder cumulants of the magnetizati
We obtainbc53.3, 6.5, and 19 fors51.1, 1.3, and 1.5. As
for s51.7 ands52.0, cumulants no longer cross except
kT50 within statistical error~the latter case yieldingbc be-
tween 150 and 200, yet with excessive dispersion!. While the
crossover appears to take place in the very vicinity of

FIG. 16. Specific heat for various lattice sizes ands
51.0, 1.1, 1.2, 1.7 and the pure SR case~obtained using a transfe
matrix method!, from right to left. Data for other values ofs have
been omitted in order to preserve the clarity of the figure.Cv was
computed using the fluctuation-dissipation relationCv5(^E3&
2^E&2)/(kT2L). Solid, dashed, dotted, and long-dashed styles r
to L550, 100, 200, and 400, respectively, except for the SR c
where they refer toL55, 10, 100, 200.
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borderlines51.0, the critical temperature actually dies o
quite slowly to 0 ass increases.

All these numerical results lend support to Sak’s scena
for s.1.0, namely, that a crossover from LR to SR behav
occurs wheneversco522hSR. Nonetheless, it is worth
mentioning that we found this crossover to occur within t
finite, yet narrow range 1.0,s,1.2, and the pure SR case
be reached in the limits→` only. We feel strongly that this
is consistent with the RG scenario of Theumann and Gusm
@16#, whereby the crossover actually results from a comp
tion between SR and LR fixed points. This competition,
seems obvious to us, may not resolve instantly wheneves
crosses the borderline, and may thus blur this borderline o
some finite region.

V. CONCLUSION

We have studied some critical properties of the long-ran
Potts model using a multicanonical implementation of ge
eralized ensemble algorithms. Our implementation of the
eration procedure needed to obtain the density of states
shown to yield satisfying estimates of this quantity over
large range of energy and with much quicker and more sta
convergence than with the initial historical algorithm. Th
multicanonical algorithm allows one to efficiently circum
vent the slowing down traditionally experienced at first-ord
transitions, and at the same time makes the reweighting

r
e

FIG. 17. Maximum of the specific heat vs inverse lattice size
s51.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 3.0, 4.0 from top to botto
The solid line is a reminder for the~exact! SR case in the thermo
dynamic limit. Other lines are guides to the eyes.

FIG. 18. Magnetization vskT for s51.0, 1.1, 1.2, and 1.7 from
right to left. Solid, dashed, dotted, and long-dashed styles refe
L550, 100, 200, and 400, respectively.
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proach a fairly straightforward way of examining thermod
namic quantities over a large range of temperature with st
ingly modest numerical effort, i.e., by simulating ov
medium lattice sizes and performing a single long simulat
run. We have used this multicanonical approach to loc
spinodal points in the first-order regime over a large range
q ands parameters. The shape of the spinodal curve in
vicinity of the change of regime then yielded precise e
mates of the tricritical valuesc(q) up to two digits. In par-
ticular, the valuesc(3)50.72(1) is perfectly consistent with
the lower bound of 0.7 proposed by Krech and Luijten@24#,
yet in terms of precision this is markedly better by an ord
of magnitude. In this respect, our multicanonical impleme
tation allows us to obtain numerical results whose accur
is at least comparable to that of previous numerical stud
based on multihistogramming and the LR cluster algorith
although our simulations were performed on lattices hav
fewer than 400 spins. We feel strongly that this approa
might be successfully applied to other spin models incor
rating LR interactions, e.g., continuous spin models or fr
trated systems.

In addition, our study significantly extends the range
available estimates of critical couplings and exponents
the first-order regime, the agreement with MF predictio
and in particular with Tsallis’s conjectureTc;1/s in the
limit s→0 @5#, is exceptionally good. In the second-ord
regime, the relationh522s, conjectured to be exact fo
q52, is shown to yield an increasingly high discrepan
02610
-

n
te
f
e
-

r
-
y
s
,
g
h
-
-

f
n
,

whenq is increased, and its validity may just be reinforced
the vicinity of s51.0. We found, however, that the cros
over from the LR to the SR regime occurs betweens51.0
ands51.2, thus lending strong support to Sak’s conjectu
Our detailed FSS analysis of the caseq59,s51.0 yielded
one of the most surprising results of this study, namely,
unexpected behavior of correlation lengths whereby the tr
sition appears to be of the first order at finite lattice si
despite the fact that FSS theory predicts a continuous tra
tion in the thermodynamic limit. We feel strongly that th
may be accounted for by the truncation of the LR potent
which artificially brings the model closer to the MF regim
yet we also pointed out that the physical meaning of
correlation length should be somewhat challenged in the c
of LR models. The exact nature of the transition in the b
derline cases51.0, however, needs further investigatio
especially at largeq where no results have been made ava
able thus far. In this view, an efficient combination of a gl
bal update scheme with a multicanonical approach would
of prior importance to reach far higher lattice sizes.
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