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Reexamination of the long-range Potts model: A multicanonical approach
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We investigate the critical behavior of the one-dimensiapsiate Potts model with long-rangeR) inter-
actions /9", using a multicanonical algorithm. The recursion scheme initially proposed by Berg is improved
so as to make it suitable for a large class of LR models with unequally spaced energy levels. The choice of an
efficient predictor and a reliable convergence criterion is discussed. We obtain transition temperatures in the
first-order regime which are in far better agreement with mean-field predictions than in previous Monte Carlo
studies. By relying on the location of spinodal points and resorting to scaling arguments, we determine the
threshold valuer.(q) separating the first- and second-order regimes to two-digit precision within the range
3=(g=<9. We offer convincing numerical evidence supportindq)<1.0 for all g, by virtue of an unusual
finite-size effect, namely, finite-size scaling predicts a continuous transition in the thermodynamic limit, despite
the first-order nature of the transition at finite size. A qualitative account in terms of correlation lengths is
provided. Finally, we find the crossover between the LR and short-range regimes to occur inside a narrow
window 1.0<0<1.2, thus lending strong support to Sak’s scenario.

DOI: 10.1103/PhysRevE.69.026109 PACS nunider05.10.Ln, 64.60.Cn, 75.10.Hk

[. INTRODUCTION mension of the model, one-dimensional LR models are there-
fore a powerful paradigm for studying the dependence of
Microscopic models with long-rang&R) interactions de-  critical properties on dimensionality, e.g., in systems above
caying as a power law, i.e., ag 477, have aroused renewed their upper critical dimensiofiL2].
interest during the last decade. Beyond their fundamental While significant emphasis has been placed on the Ising
relevance to the understanding of critical phenomena, theghain(see, e.g.[13] for a review, specific studies of the LR
have started playing a seminal role in the modeling of neurat|-state Potts model are less numerous and rather recent.
networks[1] and spin glasses with Ruderman-Kittel-Kasuya-These include a transfer matrix study combined with finite-
Yosida (RKKY)) interactions[2], systems undergoing phase range scalindFRS [14], renormalization groupRG) analy-
separation, e.g., highly ionic systerf§] and model alloys ses based on Wilson's momentum-shell methtf] 16| or a
[4], and more widely in a large class of chemical or biologi- real-space procedufd 7,18, a cluster mean-field approach
cal models where electrostatic interactions, polarization, of19], and Monte CarldMC) simulations[20-25. The last,
van der Waals forces play a central role. They have alstiowever, mostly focused on the cage 3, and led to nu-
attracted much attention in the framework of nonextensivenerical estimates of critical exponents and temperatures
thermodynamics, where a possible equivalence with shortshowing some discrepancies. Due to the higher ground state
range(SR) models is under considerati¢]. degeneracy, this model reveals a phase diagram markedly
Since the very early work of Ruellg], LR spin models richer than that of the Ising chain. It has been shown in the
in particular have been extensively studied. In one-SR case that the transition turns from a continuous to a first-
dimensional models, it has been widely shown that longorder one as the number of staigss increased beyond a
range order occurs at finite temperature if and only#1  threshold valueg.(d) depending on the dimensionality of
[6—10], and this is in strong contrast to the SR case where nthe model. For instance.(2)=4 andq.(4)=2 [26,27] (see
phase transition exists at finite temperature. Fisher and calso Ref[28] for a complete reviey As for the LR case in
workers[11] have shown that the upper critical dimension isd=1, Glumac and Uzelac have shown from MC studies of
reduced tod* =20, whereby one-dimensional LR models the three- and five-state Potts moi20] that the same sort
exhibit mean-field-like behavior far<0.5, with the critical  of behavior occurs, i.e., there is a so-called tricritical point at
exponents taking on their classical values 1/o- and y=1 some valuer,(q) depending omg, and the transition is con-
provided the phase transition is continuous. Conversely, thénuous foro>o. This qualitative picture was later rein-
critical behavior fore=0.5 yields nontrivial exponents, and forced in [22] for q=3,5,7,9 and in[24] for q=3, both
LR models in effect go through a variety of universality relying on MC studies, and ih21] using a graph-weights
classes ag is varied within this range, thus exhibiting rich approach. On the other hand, it is noteworthy that RG analy-
critical behavior. Due to the ability to continuously vary the ses dedicated to LR models have remained thus far rather
range of interaction, which in effect alters the effective di-inconclusive, where distinguishing between first- and
second-order transitions is concerjé&—1§.
Although it is now believed thaj. depends continuously
*Permanent address: ENSEA, 6 Av. du Ponceau, 95014 Cerggn the range of interaction for this class of models, the exact
Cedex, France. Electronic address: reynal@ensea.fr; URL: http:lbcation of the tricritical line separating the two regions is
www.ensea.fr/staff/reynal still fairly controversial. The biggest hurdle for a precise and
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reliable determination of this borderline actually stems fromsizes, i.e.L <400 spins. In particular, we obtain the follow-
the weakening of the discontinuous transitionagsis ap- ing estimates foro.(q): ¢(3)=0.721), ¢(5)=0.882),
proached, even if exceptionally large lattice sizes are simue(7)=0.942), ando(9)=0.965(20), and these results are
lated, e.g., using the efficient Luijten-Béocluster algorithm highly precise. We also offer convincing evidence that the
[29]. While for q=3 o was claimed to lie between 0.6 and phase transition in the limiting cage= 1.0 is not of the first
0.7 in[20], Krech and Luijten pointed out that=0.7 still  order for all values ofy, by virtue of an unusual finite-size
belongs to the first-order regime, and that the second-ordeffect. A detailed finite-size scalingS9 analysis conducted
regime may set in forr=0.75 only[24]. The situation with  for =9 shows that, while the transition belongs to the first-
q=>5 turns out to be even worse, with numerical estimate®rder regime at finite lattice size, its first-order nature wanes
available only within fairly large ranges: a lower boundary quickly enough as size is increased so that the transition
value of 0.8 was reported i20], whereas 0.Z o(5)<1.0  tends to a continuous one in the thermodynamic limit. We
according tq22]. These results have not yielded a very pre-give a qualitative account of this behavior in terms of corre-
cise phase diagram as yet, with the only reliable assertiolation lengths, and by raising some open questions regarding
being thato,(q) increases withy. the dynamics of first-order transitions in the LR case, we try
The margina| case =1 raises another set of thorny ques- to Challenge the usual picture inherited from SR models. Fi-
tions: in [22] it was reported that the phase transition nally, by relying on the shape of the specific heat and com-
changes from a second-order to a first-order oneqfei, puting several moments of the magnetization, we conclude
while it has been shown by Kosterlitz, using a model with athat a crossover between LR and SR regimes occurs inside a
continuum of state$30], and later on by Cardy, using a narrow window 1.6<o<1.2
discrete mode]17], that inverse square interactions give rise ~ The layout of this article is as follows. In Sec. II, we first
to a Kosterlitz-Thoules$KT) transition, i.e., one governed review some prominent features of the LR Potts model
by topological defect§31]. It is worth mentioning that both through a mean-fieldMF) analysis. Special emphasis is
hypotheses may be reconciled, at least partia”y, by f0||owin@iven to the calculation of the location of spinodal points, a
a scenario similar to the one devised #—34, whereby for ~ feature we will use in Sec. IV for estimating.(q). Section
XY-like models with nonlinear nearest-neighbor interactions]ll is devoted to implementation details of the multicanonical
the KT-like transition is preempted by a first-order transitionalgorithm specific to LR models. We discuss the iteration
whenever the nonlinearity becomes strong enough. While therocedure used to obtain the best estimate for the density of
recent work of Luijten and Messingfeld on the three-statestates, the choice of an efficient predictor, and a reliable con-
Potts mode[25] lends further support to Cardy’s assertion, Vergence criterion. Improvements over the original algorithm
the controversy still appears unsettled, however, and in thigre made in order to work out the algorithm instability due to
view a determination of the asymptotic behaviorg{q) as  low energy levels being unequally spaced. Numerical results
gq—o seems of major interest indeed. regarding both first- and second-order regimes are then pre-
We wish to shed light on some of these contradictoryseénted in Sec. IV. Since we do not know of any previous
results using MC simulations in generalized ensembles, witfmplementation of a generalized ensemble algorithm in the
particular emphasis put on the first-order regime. The aim ofase of LR spin models, we pay particular attention to com-
this work is thus twofold. First, we propose an imp|ementa-pari30n with other standard MC algorithms, i.e., in terms of
tion of the multicanonical algorithm dedicated to the numeri-dynamical exponents, tunneling times, and accuracy of nu-
cal study of LR models. This algorithm, devised by Berg andmerical estimates of critical couplings.
Neuhaus a decade aff8b,36, has been successfully applied
in the past to SR models undergoing first-order transitions. Il. MODEL AND MEAN-FIELD THEORY
As numerical studies of models exhibiting first-order transi- . . .
tions are dramatically hampered by huge tunneling times Thro_ughout th!s work_we Cor?s'deT a ferromagneuc I_Dotts
when using standard Metropolis update mechanfS#s8, moglel incorporating LR interactions = 1. 'I_'h|s _mod_el is
a multicanonical approach is indeed an appropriate choicderived from a generalizegstate Potts Hamiltonian, i.e.,
for both the determination of the location of the tricritical 1
line and the estimation of critical couplings in the first-order H=—= Jii 8o o~ > hd, .
regiono<o,. Our purpose is therefore to adapt the scheme 215 T e
initially proposed for SR models so as to make it suitable for . L
a large class of LR models. Second, by relying on an extenWhere the Po_tts Spir; at sitel can t_ake on the val_ues
sive study for 3=q=<9 and a wide range of values, we 1,... ., the first sum runs over all pairs of sites, amdis

arrive at convincing conclusions regarding the location of theé" externa_ll ahgfnlng _f|eld fayorlng cond_egsatlon in Stage
tricritical line, the range of validity of the mean-field-like Incorporation of LR interactions is carried out by setting

behavior, which we find much larger than in previous stud-

ies, and the crossover from the LR to the SR regime, al- Ji=d(i—-jh=
though the last was investigated for the three-state model ! i~
only. We show that our multicanonical implementation yields

numerical estimates which are in agreement with and oftewhere d=1 throughout this study, and is an adjustable
better than those found in previous studies, although ouparameter which can be related to the effective dimension of
simulations were performed by relying on medium latticethe model. Aso falls off to —1, this model tends to the

|d+<r’
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mean-field case where all interactions have equal strengtldefined above. This is carried out by parametrizing the trial
whereas the limiting case—« corresponds to a pure SR density matrixp; in terms of the following order parameter
model. Crossover from LR to SR behavior should actuallyfield:

take place a=1.0[39,40, yet no numerical evidence has

been given so far for this model which would reinforce this q5oi 0y 1

assertion. The thermodynamics of the model is studied nu- mi= T g-1 [

merically by way of the following order parameter: Pi

where the average is weighted by the trial density matyix
M= w Seeing that all states but statq are equivalent, the con-

qg-1 straint Trp;=1 thus yields
wheren=1, ..., andp, is the density of Potts spins in ()= 1-m; ms
staten, which varies between d/at infinite temperature and pitihi»ai)= 1%a;,00°

1 in the ground state. On a lattice of sizenumerical imple-

mentation is carried out by using periodic boundary condi-Considering a uniform external fieltd;=h, we havem,
tions, i.e., one adds up interactions between all the spins of m for all sites; hence the free energy per spim) reduces
the original lattice only, and replaces the bare coupling conto

= i o o
stantJ(r) by J(r)=2,2_,J(r +nL). Retaining only inter qf(m)

actions such thdi—j|<L/2 leads indeed to strong shifts in ——=—hm—{(1+o)m?+kT{ (1—m)In(1—m)
energy and critical couplings for low values, especially q-1

when finite-size scaling is to be used with medium lattice 1+m(q—1)

sizes. For the purpose of numerical evaluation, this sum may +—————In[1+m(gq— 1)]] : N
be reexpressed as -1

where we dropped terms which are constantrirso that
f(0)=0, and{(1+ o) is the Riemann zeta function. This
function expands as &/aroundo=0; hence transition tem-
peratures are expected to vary as It the vicinity of the
where £(s,a) denotes the Hurwitz zeta function. The self- MF regime. _Equilibrium values of the ord_er parameter are
energy will be omitted since it is just an additive constant tolocated at minima of the free energy, and it can be seen that
the total energy. m=0 is a_stable minimum fork'_r>2§(1+ q)/q. For q
Mean-field behavior can be readily obtained by using a=2, there is no third-order term in the series expansion of
variational MF approactsee, for instancpt1]), which relies  f(m); hence a second-order transition occursk@t= (1

~ 1
J(n)=

o r1+0'+ Ll+0’

+{

r r
g(l-l—o,l—l—t l+0’,l—E”,

on the minimization of the following functional: +0). Forg=3, the negative coefficient in the third-order
term of the series expansion creates a second minimum,
Flp]=TrpH+kTTrplnp which physically corresponds to a first-order transition. At

the transition temperature, the free energy has the same value
at both minima. Following28], the exact transition tempera-

with respect to a trial density matrpx Here the trace opera- ) i
tion means a sum over all spin configurations, and the del!’® KT may be computed by simultaneously solvifign)

pendence oH and p on the spin configuration is implied. —! (M)=0 and yields

F[p] reaches a minimum whenevere "T/Z i.e., in the KT q-2
case of a canonical Gibbs distribution, and this minimum ¢ - ]
yields the free energy of the system. The mean-field approxi- {(1+0o) (a-DIn(q—1)

mation allows us to express the density magriaf the whole
system as a product of one-site density matrigesvhich £7(m)=f"(m)=0, giving temperature points at which either

depgnd solely on the spin variable at s_utéwe_may thus one of the two minima vanishes. These equations possess
rewrite the trace operation as a sum involving traces on vial soluti | -
single spin variables, namely, one trivial solution, name ykT1—2_§(1+ o)/q correspond-

' ' ing to the extrema amn=0 becoming unstable, and a non-

trivial solution kT, which may be obtained numerically by

Similarly, spinodal points are computed by jointly solving

Flp]=kT> Tripinp;—> hTrpd, - solving the following equation:
i i "
KgS-2 Kq
! 2gq-1 "°NZ)
_E IE:#J TripiTrjpj‘]ijngi,tTj' q

whereS=1+1+2(1—q)/(Kqg) and we have sek=/(1
For further comparison with numerical results, we are mainly+ ¢)/kT,. Alternatively, one may also exprekas a function
interested in expressing the free energy as a function of aof the MF energyE=—¢(1+0)m? and imposef’(E)
order parameter which is as similar as possible to the onef”(E)=0. While these equations yield the sakig, and
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1 . . . . - - - and using local updates, there have been several attempts to
A KDJc(l+a) o T devise efficient update algpritr_\ms basedgiobal gpdates
0.8k \ KLJCL 1 o) = A e.g., cluster algorithms, which in the case of continuous tran-
i~ D\ e sition decrease critical slowing down by several orders of
+ RN LAV CR B magnitude(see[46,47); also a LR implementation if29]).
%0.6 - R X - On the contrary, multicanonical method85-37,48 are
= L M, 2 ST 4 based on random walks in the energy landscape, irrespective
< o4k e S of the particular move update utilized, wherebfja energy
’ el distribution is now sampled. First, this results in the algo-
i e ] rithm quickly sampling a much wider phase space than in the
02 : ' ' : : S canonical case, by allowing the system to cross any free

2 3 4 > 2 7 8 9 10 energy barrier. Second, this allows the density of states to be

computed over the whole energy axis, thus extending the
FIG. 1. Reduced temperatures of spinodal pokifs/{(1+0o)  reliability of reweighting procedures over a much wider

andkT,/{(1+ ) together with the reduced transition temperaturerange of temperature than in the case of standard histogram
kTc/{(1+0) as a function ofj in the MF approximation. methodg49], where poor histogram sampling at low energy

usually induces strong statistical bias. As opposed to multi-
kT, as above, the two expressionsfafbviously do not have histogramming50], a single run is needed to cover the en-
the same shape. Spinodal points are sketched in Fig. ¢ for €rgy range of interest. Once a reliable estimate of the density
between 2 and 10. These correspond to the limit of metast#f state has been obtained, it is then straightforward to com-
bility for each subphase, respectively. For temperature pointgute thermodynamical functions otherwise hardly within
lying inside this temperature range, there exist two values ofeach of canonical simulations, e.g., canonical entropy and
the order parameter corresponding to a null curvature of théee energy. It is noteworthy that this simulation technique
free energy, a feature which is known to induce a long-rang@ctually belongs to a larger class of algorithms called
(i.e., low wave numbgrinstability. This in turn triggers a generalized-ensemblalgorithms, which encompasses vari-
phase transition through the so-called spinodal decompos@nts based on random walks in the entropic varidbiék
tion [42]. As expected, the width of the spinodal curfe  ensemble” or “entropic sampling” algorithm$51,52), or
—T, shrinks to zero ag—2, and accounts for the second- the temperature variablee.g., “simulated tempering”
order nature of the transition gt=2, since in this limit the ~ [53,54)).
two minima merge into a single large minimum responsible
for the well-known divergence of fluctuations at a continuous A. Rationale

transition. The rationale behind the multicanonical algorithm is the

generation of a Markovian chain of stat¢s;}, whose
[ll. THE MULTICANONICAL ALGORITHM weightsW,, (E(o;)) are tweaked so that one eventually gets

a flat energy histogram, i.e., #(E) denotes the probabilit
The Metropolis algorithnthereafter denoted as belonging j, energy gxm(E)gis the densigcy )of states P y
to the class otanonicalalgorithms, i.e., relying on a Bolt- ’

zmann weightinghas long been considered the paradigm for Pmu(E)=n(E)W,,(E)=const.

Monte Carlo simulations in statistical physics, yet this

method faces some severe drawbacks in situations where ti#nce n(E) usually increases drastically with energy, low-
sequence of states created by the Markovian chain leads emergy states are thus sampled much more often than high-
very repetitive dynamics, i.e., dramatically low acceptancesnergy ones.

rates and exponentially diverging autocorrelation times: this Following Berg in[55], we computeV,, (E) through an
makes it necessary to simulate systems over exceedinglterative procedure, starting from an initial canonical simula-
long runs in order to obtain good statistics and reliable estition at inverse temperatugg,. 3, indirectly sets the energy
mates of thermodynamical averagsege, for examplg43] below which the energy histogram is to be flat, iB,ax

and the contribution by Krauth if44] for an introductory :<E>Bo- Thus, kTy=1/8, must be chosen high enough to

review). This is the case when one comes to simulating sySensure that the final energy histogram spans a suitably large
tems with rugged free energy landscapes, e.g., polymergnergy range upward, e.g., reaches the energy of the disor-
proteins, and disordered systems including spin glasses, fQfered phase in the case of a first-order transition, and extends
the dynamics may then get trapped in one of numerous loc&@yen further away if one wants to observe with satisfying

minima, especially at low temperature. One experiencegccuracy the free energy plateaus signaling the limit of meta-

tions (the so-called supercritical slowing doW87]), where  HamiltonianH,(E), so that

the tunneling time between coexisting phases grows expo-
nentially with the system size, due to the increasingly high W, (E, Bo) =€ PoHmulE),
free energy barrier to be overconeg.,[45]).
Since slow dynamics mainly results from the combinationHence, multicanonical simulation can be envisioned as a ca-
of weighting the Markovian chain with Boltzmann weights nonical simulation at inverse temperatysg with the usual
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Boltzmann weight, provided the original Hamiltonian is re-

placed by an effective Hamiltonian to be determined itera- {g‘oz Igo
tively. As a side note, a cluster implementation in the frame- E K
work of the multicanonical algorithm is thus far less =] Y%

straightforward, since this effective Hamiltonian has funda-
mentally a global nature, whereas canonical simulations exand g's is araw inverse damping factor proportional to the
plicitly preserve the locality of the original Hamiltonidsee,  reliability of the kth histogram. It has been shown [i65],

e.g., the multibond approach [88,48). following an error calculation argument, that
Denoting H(E) as the true estimate of the effective
Hamiltonian, we may thus write N(E)N(E+ 6E)

907 N(E) *N(E+ oE)

H” (E . . . . .
n(E)ecePoHmu(®), provides an estimator proportional to the inverse of the vari-
ance of 8" "Y(E). Onceg "(E) is known,H!! }(E) is de-
The microcanonical inverse temperaty@€E) may be easily  rived by a mere integration starting from the initial condition

related toH?;, (E), as we havéassumingk=1) Hmu(Ema) =Emax. Finally, for E<E!.;,, HLHE) will
have to be computed using a suitably chosen predictor, until
dinn(E) dH; (E) at lastE,,;, becomes equal to the ground state energy. A

cubic spline is then fitted tbl,, (E) at every bin center, and
this curve is used to compute acceptance probabilities during
the next run.
Since the dynamics of the Markovian chain is governed by |t can be seen that E(R) leads to a steady state whenever
the transiton rate W(a—b)=min(l,exdBo[HniEa)  N(E) is constant over the energy range of interest. Writing a
—HmEp)1H, we may write, for two states infinitely close in recursion equation involvingg(E) instead ofH ,(E), to-
energy, i.e., wheneve,=E,+ oE, W(a—b)=min(1,exp  gether with the inclusion of a damping factor, allows one to
[—B(Ex)E]). Hence it is themicrocanonical temperature handle the situation where some bins have null entries, a case
which is the relevant quantity where the dynamiesy., the  \which otherwise leads to a fairly spiky graph fbk., (E)
acceptance rateof the multicanonical algorithm is con- and inconsistent dynamicAccidentalnull entries at energy
cerned. valuesE or E+ SE will simply leave 8(E) unchanged, and
the corresponding parts ¢,,,(E) thus move as a block.
B. Iteration scheme Since acceptance rates hinge on the microcanonical tempera-
. 0 B _ 0 ture, this in effect drastically reduces bias on the dynamics.
We initially set Hy, (E)=E, or equivalently 85(E)  considering a small set of histogram bins that are copiously
= Bo, as this indeed corresponds to a canonical simulation &fed for the first time during a given iteration rufe.g.,
temperature J,. At stepi, a simulation is performed using high-energy bins during the early iteration runs whenever we
a Boltzmann weight with effective HamiltoniaH,(E);  pegin with a canonical simulationwe see that the related
then an energy histograid'(E) is eventually computed us- cumulativeinverse damping factor first soars and produces a
ing independent samples. Incidentally, taking truly indepengreat amount of change i(E) in the couple of runs that
dent samples proves useful during the late stages of the ifollow, and then decays progressively to zero as these bins
eration scheme only, where the aim is then to refine a nearlyontinue to be filled. By taking into account all the data that
flat histogram. During early iteration steps, histograms mayhave been sampled up to stieghis modified recursion both
be computed using nonindependent samples without signifclearly stabilizes the algorithm and reduces relative errors
cantly affecting the convergence. We now der}g, as the  due to poor histogram sampling.
lowest energy level that was reached throughout the previous Choosing the most appropriate value of the histogram bin
runs, including step: this is the energy level below which width results from a trade-off between resolution and com-
H!* L(E) will have to be predicted, since no histogram dataputation time. A higher resolution on the one hand guaran-
are available inside this energy range. Issues regarding atkes good histogram flatness, and is especially crucial at low
equate predictor choice will be considered later on in thisenergy levels, where the density of state displays a rugged
section. The rules for updating',/! at stepi+1 fromH},,  graph. On the other hand, we impose a fixed number of in-
at stepi are based on the following equations. FBr dependent samples per histogram bin, so as to give the his-
=Emax, Hmu (E)=E, i.e., the dynamics is canonical-like at togram variance an acceptably low value; hence a &

inverse temperatur@, for all iteration steps. FoE' . <E  implies more simulation steps per iteration. Our approach is

<Emax: mn thus to first choose a fairly higlfE, e.g., one yielding
around 20 bins, during the early stages of the iteration pro-
_ . gy, N(E+SE) cess in order to obtain a rough picture of the density of
BTYE)=B'(E)+ Elni—, (2 states, and then to progressively redéé&eonce the ground
N'(E) state has been reached. As will become obvious in Sec. IV A,
the ultimate value oBE deeply affects the attainable preci-

where sion on the computation of spinodal points, since the latter is

B(E)_ dE _BO dE
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henceg, can never be zero. In order to avoid losing details
of the shape oH, (E) for E,<E<E, that were possibly
collected during previous runs, we updétg,(E) through a
linear difference scheme,

-1025

=

5Hmu(Eb) - 5Hmu(Ea)

1035 P —— Hmu(E) = E,—E, (E=Ea)+ dHmu(Ea),

-1040 - where 6H,,(E)=H Y(E)—H! (E). While this has obvi-
Groundstat ously no effect where nonaccidental null entries are con-

-1045 rounesate cerned, this favors quicker convergence during the early runs

where the inadequate shape ldf, (E) is more likely to
IE)roduce empty bins.

The iteration process stops whenever the energy histo-
gram has become suitably flat over the energy range of in-
terest, namely, between the ground state energyEang for
based on a precise location of free energy plateaus, and thifyr purpose. We evaluate this property by computing the
indeed entails having enough bins belonging to a given plastandard deviation of histogram entries, as well as the same
teau. As a rule of thumb, the best compromise is then tuantity for the logarithm of histogram entries restricted to
obtain between 100 and 300 histogram bins in the final stageyonempty bins. The latter seems to be a better indicator since
with the number of bins increasing as thevalue corre- it js sensitive to both poorly populated bins and histogram
sponding to the second-order regime is approached. peaks, whereas the former increases only with rather spiky

In this view, the unequal spacing of energy levels in LRhjstograms. In addition, we estimate the degree of conver-
spin models deserves specific attention. As witnessed in Figyence of the algorithm by computing the mean square dis-
2, large energy gaps separate isolated energy levels or tifgnce betweemd! (E) andH'|Y(E) after the ground state
groups thereof in the vicinity of the ground state, whereas th@as peen reached. We then compute a threshold value for

distribution gradually turns into a near continuum ab&e each indicator by trial and error, based on a couple of short
~—1025. Setting a lowsE value leads in turn tmonacci-  ryns for various lattice sizes and bin widths.

dental null entries in those bins located inside energy gaps,
wherebyB(E) never gets updated at isolated energy levels
andgg is always zero. Since the graph of the density of state
looks indeed fairly wrinkled near the ground state, and the OnceHy,(E) has been satisfactorily computed, a long
dynamics there is noticeably sensitive to even the smallegtroduction run is performed using this effective Hamiltonian
departure ofH,,(E) from the ideal line, we would then in place of the original one, and then estimates of thermody-
observe a sharp steady peak in the lowest part of the energiamical quantities of interest at inverse temperaiBrare
histogram, which the present recursion would not be able t§omputed using a reweighting scheme, i.e., formally,
suppress. One could trivially think of working this out by

FIG. 2. Lowest energy levels faq=5, o=0.5, N=400, com-
puted by sorting energy samples from a long simulation run. Eac
level is drawn as a horizontal line.

C. Reweighting procedure

implementing variable-width bins that would span energy 2 (A)en(E)eFE
gaps. This is, however, impracticable since the distribution of _E
energy levels is not known prior to starting the iteration pro- (A)p= Z(B) '

cess(for this is precisely what we intend to compute with the
density of statgs To circumvent this limitation, we have where(A)g denotes the microcanonical averagefohit en-
modified the previous recursion so that null entries are alergy E, and the partition function is given byZ
ways skipped, however accidental or nonaccidental they may: s _n(E)e #E. The best estimate for the density of states
be. Denoting byE, and Ey,, with E;<E,, the centers of n(E) is provided byn(E)xN(E)efo"muE) where N(E)
histogram bins located on each side of a set of contiguoustands for the number of bin entries at eneEjgzomputed
empty bins, we have from the production run. In order to avoid numerical over-
flows, as well as to suppress bias resulting from possibly
strong variance on microcanonical averages, we found it
(3 ~more appropriate to computeA), from a sum running
: , . . .
N'(E,) over samples instead of energy bins, i.eA),
=3, AW(E))/ZwW(E;), wherew(E;)=efoHmu(E)-AE~-K K
is then determined so as to avoid both numerator and de-
where B(E,) = Bo{Hmu(Ep) ~Hmu(Ea)} and we now im-  nominator overflows. Providing that the histogram sampled
pose during the production run is flat to a good approximation, the
maximum in efomdE)=FE s reached whenever
N(E,)N(E,) dH.mu(E)_/dE~,8/BO, which yields. .the energy value. at
Jo(Ea) = a—b; which K is to be computed. In addition, since the reweight-
N(Ea) +N(Ep) ing scheme involves an exponential contributiorHgf (E),

e Jo(Ea)  N'(Ep)
:8 l(Ea)_B(Ea)+Eb_Ea|n
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the resulting curveefoHmd®)~AE s strongly peaked around T T T
the maximum; hence it is clear that only histogram points in -200

the vicinity of this maximum contribute toA) ;. In effect, S 600 i
we found that the existence of two distinct maxima, or g i
equivalently of two energy values for whigB(E) has the 'NMIOOO |

same value, coincides with the occurrence of a first-order
phase transition.

Following the same reweighting procedure, we compute
partial free energy functions, i.e5(8,m) wherem is the 1800 F &
order parameter, and reweighted histograms of the energy, #0703,
i.e., Nw(B,E). The partial partition function is straightfor-
wardly derived from a partial sum over samples having the o
prescribed order parameter, FIG. 3. Data points indicate the initial guessds, (E) that
were fed into the iteration scheme &t=400, q=5, and o
=0.3(¢¥), 0.5(+), 0.9(@O). Each initial guess was computed us-
ing Eqg. (5), i.e., by scaling a true estimate obtainedLat 200.
Solid lines show true estimates &f,, (E) as obtained after the
which then yieldsF(8,m)= —InZ(8,m)/8. Similarly, a re- whole iteration scheme dt=400 converged. The straight dashed
weighted histogram of the energy is obtained fromline sketches the original Hamiltonian, i.éiy (E)=E.
NrW(Ig,E):N(E)eBonu(E)*BE.

(B)

-1400

Hmu

-1600 -1200 -800
E

-400 0

Z(B,m)zz eﬂOHmu(Ei)_BEiamymi, (4)

=N andL=2N, and let us divide the latter into two sub-
D. Predictor choice systems %; and 3, of equal sizeL. Since H(E)
We now discuss some issues related to the choice of aﬁkTom n(E), whe_ren(E) stEnds for the gen5|ty of states, we
efficient predictor forE<E,,;,. For small lattice sizes, we ave to_ comput_en(E) f(_)r % as a function of(E) for <.
initially feed the algorithm with an effective Hamiltonian Neglecting the interaction between subsysteigsand %,
Humu(E)=E, and the objective is then to find an appropriate@nd denoting bE, the energy of%,, the density of states
trade-off between speeding up the convergenc&lgf, to-  for  just readsn(E) =X n(E;)n(E—E,), which yields
ward the ground state and avoiding algorithm instability.

While the former demands that,, (E) have a sufficiently ,30ﬁmu(E)2|”2 ePolHmu(ED) + Hn( E~E)]

high slope belovE,,;,, the latter still requires that the algo- E1

rithm remain ergodic to a suitable extent. Our implementa- 1

tion relies on a first-order predictod,,,(E)=a+bE, and ~|n_f d E,ePolHmuEd) F Hm(E-E1)]
we impose continuity ot ,(E) at E,. The simplest ap- oE

proach is then to choose a predictor slope so that continuity ) ) o o
on H/, (E) is enforced atE=E iy, i.e., b=B(Emin)/ Bo. whergéE is the energy hlstqgram bin vyldth. Prqwdmg that
While E,;, reaches the ground state rather quickly using thid(E) iS @ monotonic and rapidly increasing functionifwe
predictor, the dynamics often gets locked in very low energy™ay use a saddle-point approximation to evaluate the former
levels due to the particularly steep slopettf(E) in the Sum. The maximum ot (E;) +Hm,(E—E,) is reached
vicinity of the ground state. The time needed by the iterationVhenevere, =E/2; hence
scheme to recover from this deadlock and obtain a flat his-
togram thus becomes prohibitive. On the other hand, choos-
ing b=1 leads to the smoothest yet slowest convergence,
and avoids deadlock issues. An efficient compromise is thus
to ensure a “weak” continuity ak,,;,, i.e., by computing This expression may be readily extended to lattice sizes
the slope of the predictor using a least-squares scheme basdliat are any multiple of the original size. Figure 3 sketches
e.g., on the first 10% of points abo&g,;, . results obtained foq=5 ando=0.3, 0.5, and 0.9. A series
For large lattice sizes where reaching the ground statef iteration runs was first conducted with=200 spins in
energy can become time consuming, we resort to a “scalingrder to obtain an estimate &f,, (E) for this lattice size,
trick” whereby H,,(E) is initially guessed from the density then this estimate was scaled using E%).and used as the
of states obtained at a smaller lattice size. This approach WaSitial guessﬁmu(E) for the next series of iteration runs at
initially mentioned by Berg and Neuha{87], and claimed | =400. Equation(5) yields a very acceptable guess for
to work perfectly within the framework of a study of the =0.9, and the two curves are hardly distinguishable from
two-dimensional ten-state Potts model with nearest'neighbqfach other. As illustrated in F|g 4, the energy histogram
interactions where the energy is additive to a perfect extengecomes nearly flat within five iterations. For=0.3 and
The presence of LR interactions, however, slightly worseng) 5 the agreement remains quite satisfying, yet the initial
the case, especially at low. The scaled density of states is gyess falls slightly below the true estimate at low energy
computed as follows. Let us consider, for the sake of simievels, and the lowest-energy bins are exceedingly enhanced
plicity, two systems®, and3, with respective lattice sizels  during the first iteration runs. More iteration runs are thus

_ E \/7T/|H" (E/2)|
Hnu(E)=2Hn, + 5

5 + kToln
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C 5th iteration === ]
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E

FIG. 5. Integrated autocorrelation timevs lattice sizel for g
FIG. 4. Energy histogram as computed after indicated runs, for= 7 ande=0.2, 0.4, 0.6, 0.8. Dynamic exponents computed from
g=5, ¢=0.9, L=400 spins, using Eq5) to compute the initial ~ afittoL*arez=1.091), 1.151), 1.381), 1.551), respectively.
effective Hamiltoniarﬁmu(E) from a previous run dt =200 spins.

Labeling ony axis indicates normalized probabilities. ®,(t)~e V" ris then derived from a simple integration
scheme. Since the latter function makes sense within equi-
required to obtain a perfecﬂy flat histogram asis de- librium only, we first discardh thermalization steps, where

creased, and the benefit of this approach in effect becomd$ obtained by using the nonlinear relaxation function that
negligible for <0.3. Indeed, the algorithm then spends adescribes the approach to equilibriu3] and averaging
great number of iteration steps being trapped in low energ@Ver several dry runs. An interesting point regarding multi-
levels, seeking to rectify the shape of the density of states i§anonical simulations is that, since they are random walks in
this energy region until convergence is obtained: startingnergy space, ‘thermalization{although this term is no
from an initial canonical effective Hamiltonian actually longer appropriate as far as generalized ensemble algorithms
yields better performances. Since, for systems with LR interdreé concernedalways occurs rather rapidly; simulations
actior‘isi Computatior‘i time scales WIIH, using this “Scaiing based on a nearly flat hiStOgI’am have shown that a value of
trick” thus greatly reduces the time needed for proper con-1000 MCS is indeed appropriate on average.

vergence, at least far>0.3, and partially compensates for ~ Results forq=7 and o lying between 0.2 and 0.8 are

the lack of a hybrid multicanonical-cluster algorithm dedi- Shown in Fig. 5 for integrated autocorrelation times, and in
cated to LR models. Fig. 6 for tunneling times. The slight dispersion in the

power-law fits arises from the fact that simulations at larger
sizes were conducted with a higher number of MCS between
measurements in order to reduce memory overhead. Where

In order to measure the performance of our implementacomputing tunneling times is concerned, this results in some
tion, we have computed a dynamical exponeutefined as tunneling events being possibly skipped and the average tun-
the scaling exponent of a relevant characteristic tmoéthe ~ neling time being overestimated. Both figures show, how-
simulation, i.e.<L% whereL denotes the lattice size: while ever, that a power-law behavior is perfectly plausible. In the
for second-order transitions it is widely known that the inte-case of first-order transitions, the reduction in simulation
grated autocorrelation time represents such a relevant timeosts is thus drastic in comparison with standard canonical
for first-order transitions the tunneling time through the en-algorithms.
ergy barrier ¢,,) proves to be a more meaningful indicator ~ For both indicators, we obtain an averaggightly above
[38]. We define the latter as one-half of the average numbet.0 for 0=0.2, yetz increases smoothly with decreasing
of Monte Carlo steps per spitMCS) needed to travel from range of interaction. This may be accounted for by the fact
one peak of the reweighted energy histogifayn, (3,E)] to that spatial and time correlations grow as we depart from the
the other, with the temperature being set to the transition
temperature. Tunneling time is expected to grow exponen-
tially with L for canonical algorithms, and to scale as a
power law ofL for multicanonical algorithm$37]. In both
cases, it appears that the chosen characteristic time is a good
indicator of how quickly the demands on CPU time should
grow with increasing lattice size: for second-order transi-
tions, this is the time needed to generate truly independent
samples, while for first-order transitions, this tells us at what 100
rate the dynamics spreads out over the energy barrier and t ]
thus to what extent samples get efficiently picked from the 50 100 100
two phases in coexistence. L

The integrated autocorrelation time is computed by using FIG. 6. Tunneling timer,, vs lattice sizeL for q=7 and o
the well-known time-displaced correlation function which =0.2, 0.4, 0.6, 0.8. Dynamic exponents computed from a fit‘to
displays an exponential-like short-time behavior, namelyarez=1.251), 1.30(2), 1.371), 1.531), respectively.

E. Algorithm performance

Fc=08 »
| 6=06 o
1000 6 =04 =
Fo=102

Ttun (MCS)
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MF regime and approach the SR one. As for tunneling timeswithin reach of our local update algorithm, we rather resort
the prefactor turns out to be slightly higher near the MFto an approach based on the location of spinodal points,
regime, andzincreases at a lower rate with increasinghan ~ which may be accurately determined already for medium lat-
is the case for autocorrelation times. tice sizes. In marked contrast to multihistogram techniques,
Since there are no other numerical studies of LR modelghe multicanonical method indeed allows one to obtain par-
based on multicanonical algorithms to our knowledge, comtial free energy functionor, equally, reweighted histograms
parison is limited to estimates obtained for SR models. Fobf the energy over a range of temperature which extends
the three-state Potts model, canonical simulations using loc#irly far away from the transition temperature, with remark-
updates led t@=2.7 [56], while Swendsen and Wang ob- ably modest numerical effort.
tainedz~ 0.6 using their percolation cluster algorith#6]. The basis of our method relies on the fact that the tem-
For further comparison, the Metropolis algorithm applied toperature difference between the two spinodal points will tend
a SR Ising chain ind=2 andd=3 yielded a value oz  to zero aso, is approached, since there are no metastable
slightly above 257], whereas Wolff’s cluster algorithm led states in the case of continuous transitions. Stated differently,
to z~0.27[58]. While our value is slightly greater than in the conditions under which metastability occurs, i.e., both
the case of cluster implementations, it is worth underliningfirst and second derivatives of the partial free energy are
that our multicanonical implementation yields reliable statis-zero, are met only at the critical point for a continuous tran-
tics within a single MC sweep, whereas several are needed iition: hence metastable states merge into a single large mini-
the case of a standard canonical simulation, whatever ranum as the first-order transition turns into a second-order

weighting procedure may be used. one. Such behavior has indeed been widely observed, e.g.,
for liquid-vapor transitions near the critical point, and is
IV. NUMERICAL RESULTS borne out by our MF calculation.

. ) . . For a given set of ¢,0) parameters, we determine the
We have conducted multicanonical simulations 8r ocation of the spinodal points by first computing a partial
€[3,9], using for each value of an appropriate set 0f  free energy function of the order parame&(kT,m); see
parameters between 0.3 and 0.9, so that we could obseryg, (4] over a large temperature range. Alternatively, we
strong and weak first-order transitions, as well as continuoUs,ake use of a similar function of the energy, i.e.,
ones. .Forq=3, some sllmulatlons were performed with Fo(KT,E)=—InN,,(KT,E), where N,,,(kT,E) denotes the
>1.0 in order to investigate the crossover from LR t0 SRre\yeighted histogram of the energy. While the latter function
regimes. ane the density of states had been determ!ned UStays the same role as the partial free energy of the magne-
ing the iteration process described above, a production IUBzation, it yields a higher precision at low, as we will

was performed for lattice sizes betwedn=50 andL  yjitness in a moment. The limit of metastability at finite lat-
=400. The number of MC sweeps needed for each produgGice size is then defined byF,/dE=d?F,/dE2=0, or al-

tion run was computed so as to yield approximate§ B 1o rnatively dF/dm=d2F/dn?=0: for a first-order transi-
truly indepe_ndem samples. In this 'view, rapidly increas.ingtion, this condition is met at two temperatur&s and T,
a_utocorrelatlon times in effect restricted our work to lattice,yhich satisfy the inequalitflf,<T.<T,, whereT, denotes
sizesL<400. the transition temperature.

Since these free energy functions usually have rather rug-
ged graphs, we first filter out rapid oscillations by means of a
linear smoothing filter, whose order is computed so that we

As already stated in the Introduction, a precise determinaare left with at most three extrema over the whole tempera-
tion of the tricritical valueo.(q) is a real challenge, due to ture range of interest. By continuously varyik@within this
the weakening of the first-order transition as is ap- range, we determine the temperature of each metastable state
proached from below. This makes traditional indicators, e.g.by monitoring the change in the number of minifsae Fig.
latent heats or energy jumps, fairly inefficient, since observ7). In contrast to[20], the transition temperatur€.(L) is
ing clear jumps in the vicinity of the tricritical value entails then obtained by imposing that the number of bin entries in
simulating huge lattices. Glumac and Uzelac[#0] used N, (E) be the same below and above the energy correspond-
three less traditional estimators, namely, the interface freeng to the maximum of~,(kT,E). This corresponds to the
energy, the specific heat, and the reduced fourth-order Bindeyo-called equal-weights condition as proposed by Lee and
cumulant, which all turned out to be less sensitive to thisKosterlitz in[60], and is equivalent to the condition that the
weakening: in particular, the last quantity defined l4s  average energy be the arithmetic mean of the energy of each
=(E*/(E?) is expected to reach a nontrivial constaht  phase. For the sake of comparison, however, we also com-
#1 asL—o at a first-order transition only9]; by extrapo-  pute the temperaturd,q(L) at which both minima of
lating to the thermodynamic limit from measures taken atF,(kT,E) have the same value. We then proceed with the
different lattice sizes, they foundl, to fall between 0.6 and computation of similar quantities using(kT,m), and we
0.7 for the three-state model. Still and all, this approach im-estimate statistical errors using a bootstrap procedure.
poses simulation of fairly large latticéaroundL =3000) for Graphs of the free enerdy(kT,E) in Fig. 7 show that
the extrapolation procedure to be reliable, let alone the fadhe peak and the plateau corresponding to the disordered
that Binder cumulants may experience uncontrollable crosgpphase are much narrower than those of the ordered phase. As
over effects[60]. Due to the modest lattice sizes that area result, the precision in the determination of the temperature

A. Free energy functions and FSS
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-30 Ty weeeer . 37 38 3.9 4 41 42

1 S 1 1 1 kT
-3.5 -3 -2.5 -2 -1.5 -1

E/L FIG. 8. Average energy per spin fay=3, 0=0.2, L=400,

__ _ computed over both phasésolid line), ordered phase onlflower

_ FIG. _7 Graphs ofF(kT,E) - I Ny (KT.E) for- 4=5 ¢ dashed ling and disordered phase onlypper dashed line Verti-
=0.3, N=400, at four characteristic temperatur@s:,T,,Teqn,

andT,q,~T, denote the temperatures of the two metastable state cal dotted lines indicate the four characteristic temperatures: from

and the temperature of equal peak heights and that of equal pe%]:tetso(:g:; lﬁgeatlin_;t of Tﬁ;is;atﬂgﬁyxg}l)ﬁtg_?_ns;;'ogrfgn;pe';'
weights, respectivelyfE/L denotes the energy per spin. q 9 eqh: q 9 eqws PP

limit of metastability kT5).

T, of the lowest metastable state is fairly lower than that offree energyF(kT,m), since this function then becomes
the upper metastable stat&,]. This asymmetry increases nearly symmetric and displays peaks that are well separated.
with increasingq, and in effect precludes the use of re- Incidentally, the asymmetric shape B{(kT,E) can be ac-
weighted histograms for the estimation of spinodal points atounted for by the fact that specific heats have a different
g>7. Forq=9, we thus relied on the extrema of the partial magnitude in the disordered and ordered phases, since this

TABLE |. Estimates of the critical temperature in the first- and second-order redthesatter is indicated by an asterisiMF, mean
field; x, using location of peaks of the susceptibilityt*), using crossing points of Binder cumulants of the magnetization; eqw,egh, using
the free energy, wher€; corresponds to equal peak weights and heights, respectively[ R&fMC study based on multihistogramming
and the Luijten-Blte cluster algorithmg@=3) and a standard Metropolis algorithm=£5); Ref.[19] cluster mean-field method combined
with an extrapolation technique based on the i®anden Broeck and Schwaytalgorithm; Ref.[14], transfer matrix method combined
with FRS.

g o TMF)  T(x)  T(U®)  Teegh  Tleaw T (Ref.[20)  Tc(Ref.[19) T (Ref.[14])
3 0.2 4.034 3.9@) 3.981) 3.941) 3.911) 3.702 3.7023
0.3 2.836 2.7Q) 2.721) 2.71(1) 2.711) 2.708 2.71669 2.5893
0.4 2.240 2.08@H 2.0896) 2.0755) 2.0744) 2.082 2.0247
0.5 1.884 1.69@B) 1.6853) 1.6864) 1.6842) 1.702 1.68542 1.6631
0.6 1.649 1.441) 1.431) 1.431) 1.431) 1.412 1.4000
0.7 1.482 1.198) 1.191) 1.181) 1.19° 1.1968 1.1942
0.8* 1.358 1.01¢4) 1.031) 1.01° 1.0231
0.9* 1.262 0.876 0.875 0.88 0.8785 0.874
5 0.3 2.127 2.0@) 2.0711) 2.0726) 2.0704) 2.033? 2.06900 1.736
0.5 1.413 1.32B) 1.3194) 1.3193) 1.3192) 1.2972 1.31638 1.245
0.7 1.111 0.97@) 0.9732) 0.9703) 0.9702) 0.9812 0.96963 0.956
0.8 1.018 0.85d) 0.8531) 0.85711) 0.8511) 0.844
0.9* 0.947 0.74R) 0.7394) 0.74673 0.745
7 0.2 2.600 2.5Q) 2.582) 2.5782) 2.5711)
0.4 1.444 1.39%) 1.3944) 1.3941) 1.3931)
0.6 1.063 0.98@) 0.9853) 0.9841) 0.9861)
0.8 0.875 0.764) 0.7631) 0.7641) 0.7641)
0.9 0.814 0.67) 0.6761)
9 0.2 2.353 2.33) 2.331) 2.331) 2.321)
0.3 1.655 1.62R) 1.6254) 1.6213) 1.6261)
0.5 1.099 1.05Q) 1.0512) 1.0503) 1.0521)

0.7 0.864 0.79%) 0.7922) 0.7942) 0.7941)
0.8 0.792 0.708) 0.7041) 0.7041) 0.7041)

®Refers to 1K (AF).
bRefers to K (UW).
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thermodynamic quantity is simply proportional to the stan-
dard deviation of the associated Gaussian ps}{. This

may be readily observed by reweighting thermodynamical
averages over a single phase at a time, once the maximum of
F(kT,E) which separates the two phases has been located.
Figure 8 shows how this procedure was applied to the com-
putation of the mean energy per spin of each subphase for
g=3,0=0.2, andL =400 spins. A simple visual inspection
allows one to assess a much lower specific heat for the dis-
ordered phase than for the ordered phase.

At finite lattice size, however, all these temperatures ex-
perience a distinct shift proportional to the distance from the FIG. 9. Spinodal curve for 080=<0.8 (q=5). The transition
thermodynamic limit. Assuming that the FSS theory deve|_temp¢_araturé'c is indicat_ed by filled squares, and the Iim_its of meta-
oped in[59] for first-order transitions is also valid in the LR Stability T; andT; by triangles and diamonds, respectively. Errors
case, we therefore compute temperatures at infinite lattic™® Smaller than the size of symbols, and lines are drawn to guide
size by assuming power-law corrections it 1\Ve also ex- the eyes. The dotted line shows the transition temperature as pre-

. L - dicted by MF theory.
pect temperatures defining the limit of metastability to obey
the same scaling behavior, although the phenomenological
theory proposed ifi59] does not explicitly handle them. The Fig. 10 forq=9, 0=0.3, andL =400, this agreement also
inclusion of a second-order term proves necessary in order faolds, even at finite lattice sizes, for the shape of the partial
obtain satisfying fits, due to the presence of small latticdfree energyF(kT,m) and the position of metastability pla-
sizes in our set of data. Yet, interestingly enough, fittingteaus. Foig=3 andq=5, we can readily compare the tran-
finite-size temperatures to a power law of the fofliflL) sition temperatures with earlier MC studies. Results obtained
=T()+aLP yields very similar extrapolated values, with in [20] using either the Luijten-Ble cluster algorithm d
discrepancies smaller than 0.1%, i.e., within our range of=3) or a standard Metropolis algorithng£€5) are in fairly
uncertainty. In addition, we observed thag(kT,E) and good agreement with ours within an error bar that does not
F(kT,m) led to distinct finite-size shifts, with the latter func- exceed 1%, except in the case=0.2, where our estimate
tion easily allowing one to drop second-order correctionlies much closer to the MF prediction. We further compared

terms without much affecting the final result. our estimates with those obtained [ih9] using a cluster
mean-field method, and ifl4] using a transfer matrix ap-
B. Transition temperatures proach. As illustrated in Table I, results obtained using the

. cluster mean-field approach combined with the VBS extrapo-
For the sake of completeness, we also compute transitiopion algorithm yield a perfect match, with a deviation as

tempera_ltures by rglying on tyvo other estima_tors, namely, the) . as 0.1% on average over the whole rangerofalues.
magnetic susceptibility, which for magnetic systems hasrpe giscrepancy with estimates obtained using the transfer
more pronounced peaks than the specific heat, and Bind@hatrix method is slightly higher and amounts to 2% on av-

ot : (4)_

cumLiIants (23f2 the magnetization defined ad™’=1 o546 except for low values ofwhere the agreement of our
—(m%/(3(m 21 ). The latter are known to cross at a critical yggyits with the MF prediction is, here again, far better.
fixed pothi) defining the true critical temperature, yet,

since the crossing point drifts smoothly over our range of
lattice sizes, we assume a power law of the fdcth for
U@(L), with an unknown exponent [61]. In addition, As can be viewed in Fig. 9, spinodal points merge slightly
these two quantities are advantageously used to obtain crittboves~0.8 forq=5, and this indeed signals a change of
cal temperatures in the second-order regime as (se# Sec. the nature of the transition. By plottingk Ty, =kT,— kT,

C. Change of regime

IV E for more details on this isslie against 14, we observe that for all values gfthe points fit
Results for all temperature estimates are summarized in

Table | forg=3,5,7,9, and sketched in Fig. 9 fg=5. As 60

expected according to FSS theory, both definitions of the 50

transition temperature, i.e., using equal peak weights vs

equal peak heights, lead within error bars to the same esti- T

mates at infinite lattice size. Other quantiti&s(y) and &30y

T(U™) yield very similar results, with a discrepancy never o0}

exceeding 1%. w0l

For all values ofq, the transition temperatures progres-
sively depart from the MF line ag is increased. Foq
=5, for instance, the ratio betwedn(y) and the MF value
ranges from 97.3% at= 0.3 to 83.9% atr=0.8. We further FIG. 10. Partial free energ§(kT,m) for q=9, ¢=0.3, L
notice that, for a given range of interaction, the adequacy o0& 400(solid line), together with the MF predictiofdashed lingas
MF results is clearly improved at high. As illustrated in  given by Eq.(1).
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FIG. 11. Difference between temperatures of metastability FIG. 13. Phase diagram computed using FSS properties of spin-
dkT,=kT,—KkT; vs lio0 for q=7 (circles connected by solid odal points, fore<1.0. Dotted lines are shown to guide the eyes.
lines). Errors are smaller than the size of symbols. MF prediction is
shown for comparisoifdashed ling

q oc

3 0.721)
quite well on a line for low enoughbr, and the slope of this
line tends toward that of the MF curve. The cape 7 is 5 0.882)
sketched in Fig. 11, where it is clear that the pointoat 7 0.942)
=0.6 marks the border between the linear and nonlinear be- 9 0.96%20)

havior, illustrating the weakening of the first-order transition

as o, is approached. Since temperatures appear to scale e graph ofo.(q) is sketched in Fig. 13 for convenience.
1/o in the vicinity of the MF regime, it is thus more appro- Considering the global shape of this graph, it is reasonable to
priate to work withT, /T, andT, /T, for the scaling factors expecto.(q)—1 asg—o. This would be clearly consistent
will then cancel out neatly except when approachingq).  with Cardy’s scenariolas mentioned in the Introductinn

As mentioned above, the latter ratio, which is sketched iraccording to which the border case=1.0 corresponds to a
Fig. 12, offers a higher precision through a larger free energyKT-like transition governed by topological defects.

plateau. Aso falls off to the MF regime, this ratio tends,

within error bars, to the value predicted by the MF theory, D. Unexpected FSS behavior of correlation lengths and the

ie., T,/T,=1.01, 1.037, 1.059, 1.077 foy=3, 5, 7, 9, dynamics of first-order transitions

respectively. On the leftmost side of the graph, we witness a | ot s now briefly inspect the case=9,0=1.0, where a
sharp decrease @f, /T aso—o.. This brings a quite reli-  gimple analysis based on the shape of the free energy at a
able way of determiningr¢(q) without much ambiguity, as  given lattice size might be markedly misleading.[22], a
opposed to, e.g., methods using the interfacial free energy Gjist-order transition fog=9 was reported on the basis of
Binder cumulants. By fitting data points to a polynomial of the observation of a double-peaked energy histogram. We
degree 2 forq=5,7,9, and of degree 3 fon=3, which  have performed a series of simulations at
turned out to yield the lowest error, we obtained the follow- =50, 100, 150, 200, 300, and 400 for this set of param-
ing numerical estimates: eters and computed correspondifigite-size spinodal tem-
peraturesT,(L) and T,(L) using the partial free energy
F(kT,m). As may be noticed in Fig. 14, a striking feature of
this limiting case is the existence of metastable states at all
finite lattice sizes, with a first-order character strongly en-
hanced at low sizes, despite the fact that FSS theory yields

e q=9 .o T,—T,=0 in the thermodynamic limit. It turns out that the
T T T transition is clearly not of the first order in the thermody-
+08 q=T e | namic limit, and this feature was also confirmed et 6, 7,
e T e i and 8; forq<6, a precise location of metastable states be-
U Y £ . came impracticable.
& 9=5 . At first blush this behavior significantly contradicts the
1.02 . expected picture, whereby for first-order transitions, the cor-
g=3 4 relation length is finite and roughly independent of the lattice
1 s size, and is merely connected to the size of clusters. As a
115 2 25 3 / 35 4 45 5 55 result, such transitions appear as if they were continuous

until the lattice size overtakes the correlation length. With
FIG. 12. T,/T. vs 1o for q=3, 5, 7, 9. Solid lines indicate regard to SR models, this has been the standard scenario thus
polynomial fits. Dotted lines are guides to the eyes. Error bars aréar, yet we feel strongly that this scenario may be somewhat
smaller than the size of symbols, except where explicitly indicatedchallenged, at least qualitatively to begin with, where models
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ported in models of DNA thermal denaturatipd2] as well
4 as in the context of wettinfg3].

In addition, we have performed simulations in the first-
order regime at the finite-size transition temperature. We
used, however, a Metropolis algorithm, since the associated
T dynamics is closer to the real nucleation or spinodal decom-
. position picture than with a multicanonical algorithm. We
observed indeed that clusters in the ordered phase always
. , . , . spanned the entire lattice, whatever the lattice size. As soon
0 0.002 0.004 0.006 0.008 0.01 as the dynamics jumps from the disordered to the ordered

/L phase, which we monitored by comparing the energy with
the location of reweighted energy histogram peaks, a single
cluster forms very rapidly and nudges its way through the

KTeqn, andkT,, respectively. Error bars are smaller than the size ofcrowd of disordered spins so that it swiftly occupies the
symbols, except where explicitly indicated. In the lirhit>%, the whole lattice. Thus, if both phases coexist insofar as, e.g., the

difference between temperatures of metastability tends to 0.001£Nergy histogram has a double-peaked structure, they actu-
Within our error bars, the transition is thus clearly not of the first@lly do not coexist at the same time and merely alternate in

FIG. 14. Linear fit of finite size temperatures vd_1for q
=9,0=1.0. Dotted, solid, and dashed lines corresponckTg,

order. time, as opposed to what is considered the usual SR picture.
In this respect, we would like to raise some challenging
incorporating LR interactions are concerned. questions regarding the dynamics of first-order transitions in

To set the stage for an attempt to interpret this behaviorthe LR case(i) Since both phases do not coexist at the same
we first turn to the consequences of finite lattice size orntime, what physical meaning should be given to the interfa-
long-wavelength fluctuations when simulating LR modelscial free energy?ii) Does a mechanism similar to nucleation
with algebraically decaying interactions. The key point in thetake place in a LR system, and if in the affirmative, how can
following discussion is the nature of the phase transition a& be reconciled with the mechanism of cluster growth in-
observedrom numerical data obtained at finite lattice size.volved in SR models?

On a lattice of size- with periodic boundary conditions, the
largest allowed distance between any two spink/B and E. Beyond the tricritical line: From LR to SR behavior

this also corresponds to the smallest interacting potential af- Wi f itical ties in th d
fordable on a given lattice. It is obvious that these spins € now focus on some critical properties in the second-

experience a stronger interacting potential wheneves ~ Order regimeoe(q) <o<1.0; then we investigate the cross-

small, and hence the whole array of spins may be rigidly tieoover“from LR to SR. beha_wor. As mentioned [i64], “.stan—

to an adequate extent for an order-disorder transition to occuffard” FSS theory s valid for kR systems provided the
through metastability. When increasing the lattice size, orffTective upper critical dimensiod” = 2o is greater than the
the contrary, spins being a distarlc apart now experience 9€ometrical dimensiod=1, i.e.,o>0.5. Thus fog=3 we

weaker interaction, and this results in a softening of the tran@Ssume “standqrd” f|n|te-§|;e scaling equatllons to be valid.
sition. Whether this softening might be sufficient to yield a '€ first determine the critical exponentusing nth-order

change of nature of the transition at soreither finite or ~cumulants of the magnetization, '-Vn=dir|]n<”f/>/dﬂ, which
infinite) lattice size, so that the transition may be continuougave minima obeying the scaling law,"™">L ™" [65]. Our
in the thermodynamic limit, is however an unsettled ques2PProach is to compute two numerical estimatesyoby
tion; this assumption is borne out at least tpr9 ando  fitting reweighted averages " andV3"" to a power law
=1.0, as witnessed by our results. A|ternati\/e|y, we may Sa@f the lattice size, and then to average over both values.
that the truncation of LR interactions at small lattice sizeOther critical exponents, i.eg and y, are computed using
artificially shifts the model toward the MF regime, since thesimilar scaling laws, i.e.,M(T¢())ecL™#”, and y™
interacting potential now varies smoothly over the available=L""". Figure 15 shows a power-law fit of peaks\6f, V5,
distance of interaction. and y against the lattice size obtained fgr=5, =0.9.

As seems obvious to us, the usual physical meaning afoints lie neatly on a straight line when using a log-log scale,
tributed to the correlation length in the case of SR modelsand give the following estimates: i4/=0.66§2), 1/,
i.e., roughly speaking the average size of a cluster of con=0.6692),y/v=0.94(04). Error bars were computed using
tiguous spins having the same value, may no longer hold i@ bootstrap procedure. Oneds known, we fit the finite-size
the case of LR models: since all the spins of the latticefemperatured (L) defined from peaks of the magnetic sus-
however distant they may be, are tied together through aneptibility to a power law of the formT (L)=T.(x)
interacting potential, there is basically no need of a long-+\AL ™Y and obtain an estimate of the critical temperature.
range order for two distant spins to already have slightlyWith regard to critical couplings obtained from Binder cu-
correlated fluctuations. In the context of first-order transi-mulants of the magnetization, we follow the same procedure
tions, this means that either clusters may extend well beyonds in the first-order regime. Finally, the critical expongris
the size permitted by the value of the correlation length, odetermined by fittindvl (T.(<)) to a power law of the lattice
the correlation length itself may become infinite in the ther-size, and slowly varying the temperature at whidhs to be
modynamic limit. This behavior has indeed already been resampled until the best fit is obtained. In the example consid-
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100 ¢ well as the exact location ofr., within the interval
5 i [1.0,2.Q, is still controversial. As shown in Table Iy/v
5. indeed appears to reach its SR valueras1™, yet this ratio
e proves no longer reliable above the borderline value, as we
% 10 will witness in a moment, and reliance on other quantities
-k becomes necessary.
£ We first review some exact results concerning the SR re-
= gime, which we obtained using an exact transfer matrix
1 e . . method. Fog= 3, the transfer matrix is a*83 matrix hav-
100 400 . ; o X
I ing three eigenvalues, which in zero external field r@ad
) _ _ =3 cosh/2)—sinh(B/2), A,=\3=2sinh@/2), where B8
FIG. 15. Fit of Vi"", V', andx™*vs L on a log-log scale, — 1T, By retaining the largest eigenvalig only, and tak-
for L=50, 100, 150, 200, 400 q(=5, 0=0.9). Emors are ihq he |imit L—o, we successively obtain the free energy
smaller than the size of symbols. ;
per spin
ered above, this leads 8/v=0.1032). Results for other log(2+e”)
pairs of (q,o) values are summarized in Table | and Table II. F(B)=-— — 5

For the borderline case=1.0, only exponent ratios are
shown. It can be seen that our estimates match fairly welhng the specific heat
those obtained from a previous MC stud?], and that the

discrepancy with results obtained from a transfer matrix ap- 232
proach in[14] never exceeds 8%. As opposed to the conjec- C,(B)=— 5"
ture made i 18], the exponent does clearly depend am [sinh(B/2) — 3 coshiB/2)]

If the relationo=2— 5 derived in[11] is indeed exact for
g=3, we should thus observe the simple behawibr=2
— =0 in the second-order regime. As illustrated in the fifth
column of Table Il, the qualitative behavior follows the con-
jecture, yet clearlyr<2— 7, and the discrepancy is remark- &B)=
ably higher forg=>5 than forq=3. Moreover, while it ap-
pears to shrink to 0 as— 1, it is unclear whethey/ v varies
linearly with o, considering the small number of points
available.

In order to get a deeper insight into the crossover to the 8
SR regime, we then conducted several simulationg=a8 x(B)= 2—7,8(1+2e5).
for o above the borderline value.,=1. This value has
been reported to play the role of a critical range of interacy;
tion beyond which a crossover from LR to SR behavior set

in. According t0[16,39, 0coc=2—7sr, Wherensg denotes g ‘at finite inverse temperature, i.e., for a finite correlation
the value of they exponent in the SR case. Singev=1for  |gngth as imposed by a finite lattice size, yields a greatly
all values ofq in the SR casepsg=1, and this indeed leads o erestimated result. For instance, we obtgin~1.3 for
to o.,=1. It should be noted, however, that this definition, L =400, a feature which is supported by our simulation re-
as initially proposed by Sak ir89] on theoretical grounds, as sults, e.g.,y/»=1.021), 1.141), and 1.281) for o=1.1,
1.5, and 4.0, respectively. Since the last two values are
clearly overestimated, this in effect indicates the presence of
exponential divergences and as a by-product drastically slow
convergence of the correction to scaling.

This analysis was corroborated by a study of the shape of

From there on, the correlation length is computed using the
standard formula&= 1/In(\{/\,), which then yields

-1

3coth B/2)—1

In 5

Finally, the magnetic susceptibility is obtained using the
fluctuation-dissipation relation, which gives

is then  straightforward to  show  that
?imﬁﬁwln x(B)/In &(B)=~lv=1. However, evaluating this ra-

TABLE IlI. Critical exponents in the second-order regime
>a.(q), andq=3,4,5. Shown for comparison are results from
Ref. [14] obtained using a transfer matrix method, and from Ref.
[22] using a MC histogram approach.

q o 1 v 1114] yiv Blv the specific heat, which turns _out tp provide th(aT r_nost_trqc—
table approach at medium lattice sizes where distinguishing

3 0.8 0.6246) 0.574 0.84%5)  0.1015) between the SR and the LR regime is concerned. In the ther-

0.9 0.541) 0.491 0.908&%) 0.0535) modynamic limit,C,(8) admits a maximunC'®=0.7618

1.0 0.961)  0.0258) at kT,,=0.3767. It is enlightening to investigate the non-
4 0.8 0.711) 0.67 0.8823) 0.1224) monotonic behavior of this maximum at finitg and this

0.9 0.6105) 0.56 0.9204)  0.0503) may be carried out by computirig(B,L) and thenC,(8,L)

1.0 0.961) 0.0229) while retaining all three eigenvalues. Since the calculation is
5 0.9 0.6682) 0.62 0.9404) 0.1032) fairly involved, and the final result admits no simple expres-

1.0 0.971) 0.041) sion, we shall hereafter simply refer to the corresponding

1.0[22] 0.966 0.017 curve sketched in Fig. 16. Whenis increased, the peak of

the specific heat first increases to a maximum, and then

026109-14



REEXAMINATION OF THE LONG-RANGE . .. PHYSICAL REVIEW E 69, 026109 (2004

0 0.005 0.01 0.015 0.02
1/L

FIG. 16. Specific heat for various lattice sizes amd FIG. 17. Maximum of the specific heat vs inverse lattice size for
=1.0, 1.1, 1.2, 1.7 and the pure SR césetained using a transfer ¢=1.0, 1.1, 1.2, 1.3, 1.5, 1.7, 2.0, 3.0, 4.0 from top to bottom.
matrix methogl, from right to left. Data for other values of have ~ The solid line is a reminder for th@xac) SR case in the thermo-
been omitted in order to preserve the clarity of the fig@gwas  dynamic limit. Other lines are guides to the eyes.
computed using the fluctuation-dissipation relati@ = ((E®)

—(E)?)/(KTL). Solid, dashed, dotted, and long-dashed styles refeporderlinec=1.0, the critical temperature actually dies off

to L=50, 100, 200, and 400, respectively, except for the SR casguite slowly to 0 asr increases.

where they refer t&. =5, 10, 100, 200. All these numerical results lend support to Sak’s scenario
for 0>1.0, namely, that a crossover from LR to SR behavior

graphs ofC, collapse and merge gently as the thermody-,.. s wheneverr,,=2— 7sg. Nonetheless, it is worth

namic limit is approached. Whenever it is witnessed iNgandioning that we found this crossover to occur within the

graphs obtained from simulation data, this feature thus Sigﬁnite yet narrow range 1:00< 1.2, and the pure SR case to
nals a SR-like behavior. ' ' .

Simulati f df <40 . be reached in the limir— o only. We feel strongly that this
latii |mu_at|or:)s were Eer ormg _or \d Lo Va}:IOL.JS. is consistent with the RG scenario of Theumann and Gusmao
attice sizes betweeh =50 andL =400, and we set the ini- 1) \yhereby the crossover actually results from a competi-
tial canonical temperature To=1.0 so that the maximum 5 hetween SR and LR fixed points. This competition, as
of C, would be clearly visible within the whole range  soemg obvious to us, may not resolve instantly whenever

=1.0. As appears obvious from a glance at Fig. 16, the casg§gsses the borderline, and may thus blur this borderline over
0=1.0 ando=1.1, on the one hand, and=1.2, on the  ¢yme finite region.

other hand, display fairly distinct qualitative behaviors. For
o=1.0, the specific heat reaches its maximum monotoni-
cally, at least for the lattice sizes that were investigated. The V. CONCLUSION

slowing down in the increase rate ad 340 allows one 0 \ye have studied some critical properties of the long-range
assess a finite maximum in the thermodynamic limit, and thig 15 model using a multicanonical implementation of gen-
clearly shows tha€, IS a nondivergent quantity, thus bring- ¢ rjized ensemble algorithms. Our implementation of the it-
ing support to Cardy’s scenario whereby the transition has @,ation procedure needed to obtain the density of states was
KT—Ilke nature on the borderline=1.0. The same_be_hawor shown to yield satisfying estimates of this quantity over a
is observed forr=1.1. On the contrary, the qualitative be- |5rge range of energy and with much quicker and more stable
havior is clearly different for-=1.2, where the maximum of - ¢,vergence than with the initial historical algorithm. The
C, first decreases with increasing lattice size, and themyticanonical algorithm allows one to efficiently circum-
quickly reaches a plateau reminiscent of the exact SR behayant the slowing down traditionally experienced at first-order

ior investigated above. While this plateau only slowly yansitions, and at the same time makes the reweighting ap-
reaches the exact SR value @s-4.0 (see Fig. 1Y, we can

however conclude that the behavior is already SR-like. This 1

assertion can be further confirmed by considering the mag-

netization, as sketched in Fig. 18. Graphs of this quantity 0.8 .
clearly merge slightly aboven=0, whenevewr=1.2; hence

there is no transition at finite temperature. While for 0.6 .
=1.1 there remains some ambiguity due to statistical errors, S

for 0=1.0 the curves now clearly intersect aroukd 04
~0.7, which at least shows that the behavior is no longer
SR-like. We finally compute critical temperatures from the
crossing points of Binder cumulants of the magnetization.

0 1 1 1 1
We obtaing.=3.3, 6.5, and 19 for=1.1, 1.3, and 1.5. As 0 02 04 0.6 0.8 1
kT
for c=1.7 ando=2.0, cumulants no longer cross except at
kT=0 within statistical errofthe latter case yielding, be- FIG. 18. Magnetization vkT for c=1.0, 1.1, 1.2, and 1.7 from

tween 150 and 200, yet with excessive dispersidvhile the  right to left. Solid, dashed, dotted, and long-dashed styles refer to
crossover appears to take place in the very vicinity of theL =50, 100, 200, and 400, respectively.
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proach a fairly straightforward way of examining thermody-whenq is increased, and its validity may just be reinforced in
namic quantities over a large range of temperature with strikthe vicinity of c=1.0. We found, however, that the cross-
ingly modest numerical effort, i.e., by simulating over over from the LR to the SR regime occurs between 1.0
medium lattice sizes and performing a single long simulatiorand =1.2, thus lending strong support to Sak’s conjecture.
run. We have used this multicanonical approach to locatgyyr detailed FSS analysis of the cage 9,0=1.0 yielded
spinodal points in the first-order regime over a large range ofne of the most surprising results of this study, namely, the
q and o parameters. The shape of the spinodal curve in thgnexpected behavior of correlation lengths whereby the tran-
vicinity of the change of regime then yielded precise esti-sjtion appears to be of the first order at finite lattice size,
mates of the tricritical valuer¢(q) up to two digits. In par-  degpite the fact that FSS theory predicts a continuous transi-
ticular, the valuer¢(3)=0.72(1) is perfectly consistent with tion in the thermodynamic limit. We feel strongly that this
the lower bound of 0.7 proposed by Krech and Luijléd],  may be accounted for by the truncation of the LR potential,
yet in terms of precision this is markedly better by an orderyhich artificially brings the model closer to the MF regime,
of magnitude. In this respect, our multicanonical implemen—yet we also pointed out that the physical meaning of the
tation allows us to obtain numerical results whose accuracygrrelation length should be somewhat challenged in the case
is at least comparable to that of previous numerical studiegf | R models. The exact nature of the transition in the bor-
based on multihistogramming and the LR cluster algorithmerline cases=1.0, however, needs further investigation,
although our simule_ltions were performed on Iat;ices haVi”QaspeciaIIy at large] where no results have been made avail-
fewer than 400 spins. We feel strongly that this approachypje thus far. In this view, an efficient combination of a glo-
might be successfully applied to other spin models incorpopg| ypdate scheme with a multicanonical approach would be

trated systems.

In addition, our study significantly extends the range of
available estimates of critical couplings and exponents. In
the first-order regime, the agreement with MF predictions,
and in particular with Tsallis's conjecturé.~1/o in the S.R. is indebted to Dr. A. Revel for providing access to
limit o—0 [5], is exceptionally good. In the second-order computing facilities of the ETISENSEA/UCP/CNRS, UMR
regime, the relationy=2— o, conjectured to be exact for 8051 research team. “Laboratoire de Physique difgue et
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